Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 942
Filter
1.
Sci China Life Sci ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38809499

ABSTRACT

The characteristics of early-onset (onset age <50 years) and later-onset (onset age ≽ 50 years) cancers differ significantly. Identifying novel risk factors for both types of cancer is crucial for increasing awareness of cancer prevention and for reducing its burden. This study aimed to analyze the trends in incidence and risk factors for early-onset and late-onset cancers. We conducted a prospective study by drawing data from the Kailuan Study. This study included 6,741 participants with cancer (624 with early-onset cancer and 6,117 with later-onset cancer) and 6,780 matched controls among the 186,249 participants who underwent Kailuan health examinations from 2006 to 2019. The primary outcomes were cancer incidence rates, and associated risk factors for early- and later-onset cancer. Weighted Cox regression was used to calculate hazard ratios and 95% confidence intervals of each exposure factor for early- and later-onset cancer by cancer type. Population-attributable risk proportions were used to estimate the number of cases that could be prevented by eliminating a risk factor from the population. Except for liver cancer, incidence rates for nearly all types of cancer increased during the study period. Smoking, alcohol consumption, lipid metabolism disorders, hypertension, diabetes mellitus, fatty liver, and inflammation were associated with a significantly increased risk of cancer at multiple sites, but risk factors for cancer incidence differed by site. Smoking, alcohol consumption, inflammation, and hypertension were the major contributors to preventable cancer. The incidence of several different types of cancer, including early-onset cancer, is increasing in northeastern China. Differences in risk factors between early-onset and later-onset malignancies may contribute to the divergence in the observed changes in incidence trends between these two specific types of cancer.

2.
Sleep Breath ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772968

ABSTRACT

PURPOSE: Major Depressive Disorder (MDD) and Insomnia Disorder (ID) are prevalent psychiatric conditions often occurring concurrently, leading to substantial impairment in daily functioning. Understanding the neurobiological underpinnings of these disorders and their comorbidity is crucial for developing effective interventions. This study aims to analyze changes in functional connectivity within attention networks and default mode networks in patients with depression and insomnia. METHODS: The functional connectivity alterations in individuals with MDD, ID, comorbid MDD and insomnia (iMDD), and healthy controls (HC) were assessed from a cohort of 174 participants. They underwent rs-fMRI scans, demographic assessments, and scale evaluations for depression and sleep quality. Functional connectivity analysis was conducted using region-of-interest (ROI) and whole-brain methods. RESULTS: The MDD and iMDD groups exhibited higher Hamilton Depression Scale (HAMD) scores compared to HC and ID groups (P < 0.001). Both ID and MDD groups displayed enhanced connectivity between the left and right orbital frontal cortex compared to HC (P < 0.05), while the iMDD group showed reduced connectivity compared to HC and ID groups (P < 0.05). In the left insula, reduced connectivity with the right medial superior frontal gyrus was observed across patient groups compared to HC (P < 0.05), with the iMDD group showing increased connectivity compared to MDD (P < 0.05). Moreover, alterations in functional connectivity between the left thalamus and left temporal pole were found in iMDD compared to HC and MDD (P < 0.05). Correlation analyses revealed associations between abnormal connectivity and symptom severity in MDD and ID groups. CONCLUSIONS: Our findings demonstrate distinct patterns of altered functional connectivity in individuals with MDD, ID, and iMDD compared to healthy controls. These findings contribute to a better understanding of the pathophysiology of depression and insomnia, which could be used as a reference for the diagnosis and treatments of these patients.

3.
Article in English | MEDLINE | ID: mdl-38775355

ABSTRACT

Noncontact sensors have demonstrated significant potential in human-machine interactions (HMIs) in terms of hygiene and less wear and tear. The development of soft, stable, and simply structured noncontact sensors is highly desired for their practical applications in HMIs. This work reports on electret-based self-powered noncontact sensors that are soft, transparent, stable, and easy to manufacture. The sensors contain a three-layer structure with a thickness of 0.34 mm that is fabricated by simply stacking a polymeric electret layer, an electrode layer, and a substrate layer together. The fabricated sensors show high charge-retention capability, keeping over 98% of the initial surface potential even after 90 h, and can accurately and repeatedly sense external approaching objects with impressive durability. The intensity of the detected signal shows a strong dependence on the distance between the object and the sensor, capable of sensing a distance as small as 2 mm. Furthermore, the sensors can report stable signals in response to external objects over 3000 cycles. By virtue of the signal dependence on distance, an intelligent noncontact positioning system is developed that can precisely detect the location of an approaching object. Finally, by integrating with eyeglasses, the transparent sensor successfully captures the movements of blinks for information translation. This work may contribute to the development of stable and easily manufactured noncontact soft sensors for HMI applications, for instance, assisting with communication for locked-in syndrome patients.

4.
Geriatr Gerontol Int ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766995

ABSTRACT

AIM: Extending working life is considered as an important initiative to respond to the population aging and pension payment dilemma. This study aimed to investigate whether work after retirement is related to improved health-related quality of life. METHODS: We used two waves of data from the China Health and Retirement Longitudinal Study in 2011 and 2018. Work after retirement was ascertained based on self-reported retirement and work status, and health-related quality of life (HRQOL) was measured with the three-level EuroQol five-dimensions. The impact of work after retirement on HRQOL was analyzed using the propensity score matching with difference-in-difference approach. RESULTS: A total of 1043 retirees were included. The results showed that work after retirement was associated with significant improvement in HRQOL among retirees (ß = 0.072, P < 0.001). Heterogeneity analyses did not show specificity on sex (P for sex interaction >0.05), but older-aged retirees seemed more sensitive to the benefits of work after retirement on HRQOL than their younger-aged counterparts (≥65 years: ß = 0.167, P < 0.001 vs <65 years: ß = -0.047, P > 0.05; P for age interaction = 0.010). CONCLUSIONS: Work after retirement shows a positive impact on HRQOL among community-dwelling adults in China. Policy-makers should take the health of retirees into account when implementing policies related to delayed retirement, and reduce health inequity. Geriatr Gerontol Int 2024; ••: ••-••.

5.
CNS Neurosci Ther ; 30(5): e14738, 2024 05.
Article in English | MEDLINE | ID: mdl-38702933

ABSTRACT

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.


Subject(s)
Exosomes , Mice, Inbred C57BL , Microglia , Parkinson Disease , Vacuolar Proton-Translocating ATPases , alpha-Synuclein , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , alpha-Synuclein/metabolism , Exosomes/metabolism , Lysosomes/metabolism , Microglia/metabolism , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
6.
J Affect Disord ; 359: 33-40, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735582

ABSTRACT

INTRODUCTION: No studies systematically examined sex differences in neural mechanisms underlying depression and mania/hypomania risk. METHOD: 80 females and 35 males, n = 115(age21.6±1.90) were scanned using 3TfMRI during an implicit emotional-faces task. We examined neural activation to all emotional faces versus baseline, using an anatomical region-of-interest mask comprising regions supporting emotion and salience processing. Sex was a covariate. Extracted parameter estimates(FWE < 0.05,k > 15), age, IQ and their sex interactions were independent variables(IV) in two penalized regression models: dependent variable either MOODS-SR-lifetime, depressive or manic domain score as measures of mania and depression risk. Subsequent Poisson regression models included the non-zero variables identified in the penalized regression models. We tested each model in 2 independent samples. Test sample-I,n = 108(21.6 ± 2.09 years,males/females = 33/75); Test sample-II,n = 93(23.7 ± 2.9 years,males/females = 31/62). RESULTS: Poisson regression models yielded significant relationships with depression and mania risk: Positive correlations were found between right fusiform activity and depression(beta = 0.610) and mania(beta = 0.690) risk. There was a significant interaction between sex and right fusiform activity(beta = -0.609) related to depression risk, where females had a positive relationship than; and a significant interaction(beta = 0.743) between sex and left precuneus activity related to mania risk, with a more negative relationship in females than males. All findings were replicated in the test samples(qs < 0.05,FDR). LIMITATIONS: No longitudinal follow-up. CONCLUSION: Greater visual attention to emotional faces might underlie greater depression and mania risk, and confer greater vulnerability to depression in females, because of heightened visual attention to emotional faces. Females have a more negative relationship between mania risk and left precuneus activity, suggesting heightened empathy might be associated with reduced mania/hypomania risk in females more than males.

7.
Front Microbiol ; 15: 1396932, 2024.
Article in English | MEDLINE | ID: mdl-38784806

ABSTRACT

Background: Anorexia nervosa (AN) and bulimia nervosa (BN) poses a significant challenge to global public health. Despite extensive research, conclusive evidence regarding the association between gut microbes and the risk of AN and BN remains elusive. Mendelian randomization (MR) methods offer a promising avenue for elucidating potential causal relationships. Materials and methods: Genome-wide association studies (GWAS) datasets of AN and BN were retrieved from the OpenGWAS database for analysis. Independent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa from the MiBioGen consortium were identified as instrumental variables. MR analysis was conducted utilizing R software, with outlier exclusion performed using the MR-PRESSO method. Causal effect estimation was undertaken employing four methods, including Inverse variance weighted. Sensitivity analysis, heterogeneity analysis, horizontal multivariate analysis, and assessment of causal directionality were carried out to assess the robustness of the findings. Results: A total of 196 bacterial taxa spanning six taxonomic levels were subjected to analysis. Nine taxa demonstrating potential causal relationships with AN were identified. Among these, five taxa, including Peptostreptococcaceae, were implicated as exerting a causal effect on AN risk, while four taxa, including Gammaproteobacteria, were associated with a reduced risk of AN. Similarly, nine taxa exhibiting potential causal relationships with BN were identified. Of these, six taxa, including Clostridiales, were identified as risk factors for increased BN risk, while three taxa, including Oxalobacteraceae, were deemed protective factors. Lachnospiraceae emerged as a common influence on both AN and BN, albeit with opposing effects. No evidence of heterogeneity or horizontal pleiotropy was detected for significant estimates. Conclusion: Through MR analysis, we revealed the potential causal role of 18 intestinal bacterial taxa in AN and BN, including Lachnospiraceae. It provides new insights into the mechanistic basis and intervention targets of gut microbiota-mediated AN and BN.

8.
Talanta ; 276: 126299, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788384

ABSTRACT

Droplet microfluidics-based single-cell encapsulation is a critical technology that enables large-scale parallel single-cell analysis by capturing and processing thousands of individual cells. As the efficiency of passive single-cell encapsulation is limited by Poisson distribution, active single-cell encapsulation has been developed to theoretically ensure that each droplet contains one cell. However, existing active single-cell encapsulation technologies still face issues related to fluorescence labeling and low throughput. Here, we present an active single-cell encapsulation technique by using microvalve-based drop-on-demand technology and real-time image processing to encapsulate single cells with high throughput in a label-free manner. Our experiments demonstrated that the single-cell encapsulation system can encapsulate individual polystyrene beads with 96.3 % efficiency and HeLa cells with 94.9 % efficiency. The flow speed of cells in this system can reach 150 mm/s, resulting in a corresponding theoretical encapsulation throughput of 150 Hz. This technology has significant potential in various biomedical applications, including single-cell omics, secretion detection, and drug screening.

9.
G3 (Bethesda) ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789099

ABSTRACT

The Muscovy duck (Cairina moschata) is a waterfowl indigenous to the neotropical regions of Central and South America. It has low demand for concentrated feed and strong adaptability to different rearing conditions. After being introduced to China through Eurasian commercial trade, Muscovy ducks have a domestication history of around 300 years in the Fujian Province of China. In the 1990s, the commodity Muscovy duck breed "Crimo", cultivated in Europe, entered the Chinese market for consumption and breeding purposes. Due to the different selective breeding processes, Muscovy ducks have various populational traits and lack transparency of their genetic background. To remove this burden in Muscovy duck breeding process, we analyzed genomic data from 8 populations totaling 83 individuals. We identify 11.24 million single nucleotide polymorphisms (SNPs) and categorized these individuals into the Fujian-bred and the Crimo populations according to phylogenetic analyses. We then delved deeper into their evolutionary relationships through assessing population structure, calculating fixation index (FST) values, as well as measuring genetic distances. Our exploration of runs of homozygosity (ROH) and homozygous-by-descent (HBD) uncovered genomic regions enriched for genes implicated in fatty acid metabolism, development and immunity pathways. Selective sweep analyses further indicated strong selective pressures exerted on genes including TECR, STAT2 and TRAF5. These findings provide insights into genetic variations of Muscovy ducks, thus offering valuable information regarding genetic diversity, population conservation, and genome-associated for the breeding of Muscovy ducks.

10.
J Transl Med ; 22(1): 494, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790051

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Subject(s)
DNA, Mitochondrial , Diabetic Cardiomyopathies , Fibrosis , Interleukin-1 , Mice, Inbred C57BL , Myocytes, Cardiac , Animals , DNA, Mitochondrial/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Humans , Interleukin-1/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocardium/pathology , Myocardium/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Signal Transduction/drug effects , Middle Aged , Mice , Sirtuin 1/metabolism , Apoptosis/drug effects , Female
11.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38733636

ABSTRACT

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Subject(s)
Aspergillus flavus , Tea Tree Oil , Terpenes , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Tea Tree Oil/pharmacology , Terpenes/pharmacology , Triticum/microbiology , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Edible Grain/microbiology , Food Preservation/methods
12.
Sci Rep ; 14(1): 11875, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789565

ABSTRACT

A flavor precursor of 4-methyloxybenzyl-2, 3, 4, 6-tetra-O-acetyl-ß-D-glucopyranoside (MBGL) was synthesized via a modified Koenigs-Knorr reaction. The thermal decomposition behaviour and pyrolysis intermediate products of the glycoside were studied by simultaneous thermogravimetric/differential thermal analysis (TG/DTA) and synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). TG/DTA results showed that the largest mass loss rate appeared at a Tp of 246.7 °C. PIMS was used to identify the pyrolysis products of MBGL at 300 °C, 500 °C and 700 °C, respectively. The experimental apparatus had some advantages in real-time analysis and fewer secondary reactions. Some important pyrolysis intermediates, such as the ions of the 4-methyloxybenzyl group at m/z 121 and the glycone moiety at m/z 347, were detected by PIMS. The results indicate that the MBGL was probably showed a different pyrolysis way compared with the other glycosides. This work reports a useful application of synchrotron VUV PIMS in a thermal decomposition study of glycoside flavor precursors.

13.
Nat Commun ; 15(1): 4458, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796508

ABSTRACT

The impact of interbasin linkage on the weather/climate and ecosystems is significantly broader and profounder than that of only appearing in an individual basin. Here, we reveal that a decadal linkage of sea surface temperature (SST) has emerged between western Australian coast and western-central tropical Pacific since 1985, associated with continuous intensification of decadal variabilities (8-16 years). The rapid SST changes in both tropical Indian Ocean and Indo-Pacific warm pool in association to greenhouse gases and volcanoes are emerging factors resulting in enhanced decadal co-variabilities between these two regions since 1985. These SST changes induce enhanced convection variability over the Maritime Continent, leading to stronger easterlies in the western-central tropical Pacific during the warm phase off western Australian coast. The above changes bring about cooling in the western-central tropical Pacific and strengthened Leeuwin Current and anomalous cyclonic wind off western Australian coast, and ultimately resulting in enhanced coupling between these two regions. Our results suggest that enhanced decadal interbasin connections can offer further understanding of decadal changes under future warmer conditions.

14.
ACS Appl Mater Interfaces ; 16(21): 27075-27086, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752796

ABSTRACT

Multifaceted nanoplatforms integrating fluorescence imaging and chemotherapy have garnered acknowledgment for their potential potency in cancer diagnosis and simultaneous in situ therapy. However, some drawbacks remain for traditional organic photosensitizers, such as poor photostability, short excitation wavelength, and shallow penetration depth, which will greatly lower the chemotherapy treatment efficiency. Herein, we present lipid-encapsulated two-photon active aggregation-induced emission (AIE) luminogen and paclitaxel (PTX) nanoparticles (AIE@PTX NPs) with bright red fluorescence emission, excellent photostability, and good biocompatibility. The AIE@PTX NPs exhibit dual functionality as two-photon probes for visualizing blood vessels and tumor structures, achieving penetration depth up to 186 and 120 µm, respectively. Furthermore, the tumor growth of the HeLa-xenograft model can be effectively prohibited after the fluorescence imaging-guided and PTX-induced chemotherapy, which shows great potential in the clinical application of two-photon cell and tumor fluorescence imaging and cancer treatment.


Subject(s)
Nanoparticles , Paclitaxel , Photons , Theranostic Nanomedicine , Paclitaxel/chemistry , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , HeLa Cells , Mice , Neoplasms/drug therapy , Neoplasms/diagnostic imaging , Optical Imaging , Mice, Nude , Mice, Inbred BALB C , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology
15.
J Hazard Mater ; 472: 134616, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754232

ABSTRACT

Soil is recognized as an important reservoir of antibiotic resistance genes (ARGs). However, the effect of salinity on the antibiotic resistome in saline soils remains largely misunderstood. In this study, high-throughput qPCR was used to investigate the impact of low-variable salinity levels on the occurrence, health risks, driving factors, and assembly processes of the antibiotic resistome. The results revealed 206 subtype ARGs across 10 categories, with medium-salinity soil exhibiting the highest abundance and number of ARGs. Among them, high-risk ARGs were enriched in medium-salinity soil. Further exploration showed that bacterial interaction favored the proliferation of ARGs. Meanwhile, functional genes related to reactive oxygen species production, membrane permeability, and adenosine triphosphate synthesis were upregulated by 6.9%, 2.9%, and 18.0%, respectively, at medium salinity compared to those at low salinity. With increasing salinity, the driver of ARGs in saline soils shifts from bacterial community to mobile gene elements, and energy supply contributed 28.2% to the ARGs at extreme salinity. As indicated by the neutral community model, stochastic processes shaped the assembly of ARGs communities in saline soils. This work emphasizes the importance of salinity on antibiotic resistome, and provides advanced insights into the fate and dissemination of ARGs in saline soils.


Subject(s)
Drug Resistance, Microbial , Hormesis , Salinity , Soil Microbiology , Drug Resistance, Microbial/genetics , Hormesis/drug effects , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/drug effects , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics
16.
Dalton Trans ; 53(21): 9021-9027, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38726731

ABSTRACT

Constructing an environmentally friendly and efficient electrocatalyst holds important and profound significance for energy-efficient hydrogen production. Replacing the oxygen evolution reaction with a lower potential urea oxidation reaction (UOR) may save energy in water electrolysis to produce hydrogen. The UOR is characterized by its high energy barrier, which results in slow reaction kinetics. In this study, we introduced Ba(OH)2 into Ni(OH)2 to form uniform nanosheets. Due to the introduction of Ba2+, the lattice expansion of Ni(OH)2 was triggered, leading to significant improvement in UOR activity. The catalyst achieved a current density of 100 mA cm-2 at only 1.316 V and exhibited remarkable stability over time. Density functional theory (DFT) calculations demonstrate that the Ba-Ni(OH)2 site significantly reduces the energy barrier for urea adsorption, intermediate steps, and desorption. This work provides a novel and environmentally friendly strategy for constructing energy-efficient and highly efficient catalysts through the doping of alkaline earth metals.

17.
Biomed Pharmacother ; 175: 116658, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701562

ABSTRACT

The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.

18.
BMC Psychiatry ; 24(1): 338, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711061

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is a pervasive, chronic sleep-related respiratory condition that causes brain structural alterations and cognitive impairments. However, the causal association of OSA with brain morphology and cognitive performance has not been determined. METHODS: We conducted a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal relationship between OSA and a range of neurocognitive characteristics, including brain cortical structure, brain subcortical structure, brain structural change across the lifespan, and cognitive performance. Summary-level GWAS data for OSA from the FinnGen consortium was used to identify genetically predicted OSA. Data regarding neurocognitive characteristics were obtained from published meta-analysis studies. Linkage disequilibrium score regression analysis was employed to reveal genetic correlations between OSA and related traits. RESULTS: Our MR study provided evidence that OSA was found to significantly increase the volume of the hippocampus (IVW ß (95% CI) = 158.997 (76.768 to 241.227), P = 1.51e-04), with no heterogeneity and pleiotropy detected. Nominally causal effects of OSA on brain structures, such as the thickness of the temporal pole with or without global weighted, amygdala structure change, and cerebellum white matter change covering lifespan, were observed. Bidirectional causal links were also detected between brain cortical structure, brain subcortical, cognitive performance, and OSA risk. LDSC regression analysis showed no significant correlation between OSA and hippocampus volume. CONCLUSIONS: Overall, we observed a positive association between genetically predicted OSA and hippocampus volume. These findings may provide new insights into the bidirectional links between OSA and neurocognitive features, including brain morphology and cognitive performance.


Subject(s)
Brain , Mendelian Randomization Analysis , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/complications , Brain/diagnostic imaging , Brain/pathology , Cognition/physiology , Genome-Wide Association Study , Magnetic Resonance Imaging , Male , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology
19.
Medicine (Baltimore) ; 103(18): e37928, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701264

ABSTRACT

BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) like liraglutide are primarily used for managing blood sugar levels in type 2 diabetes and aiding weight loss. Typically, their adverse effects are gastrointestinal, with limited exploration into their impact on mental health. CASE PRESENTATION: This report examines a 39-year-old male with type 2 diabetes who developed depressive symptoms after starting liraglutide for glycemic control and weight reduction. Symptoms included poor mood, irritability, decreased interest and energy, progressing to sadness, low self-esteem, and physical discomfort. A clinical diagnosis of a depressive episode was made, coinciding with the initiation of liraglutide. INTERVENTION AND OUTCOME: The patient depressive symptoms significantly improved within a week after discontinuing liraglutide and starting antidepressant therapy. This suggests a possible link between liraglutide and depression, despite considering other factors like diabetes-related stress. DISCUSSION: The report explores potential mechanisms, such as GLP-1RA effects on glucose fluctuations and dopamine modulation, which might contribute to depressive symptoms. The influence on the brain reward system and the reduction in cravings for addictive substances after GLP-1RA use is also discussed as a factor in mood regulation. CONCLUSION: This case highlights the necessity of being vigilant about potential psychiatric side effects, particularly depression, associated with GLP-1RAs. The rarity of such reports calls for more research to investigate and understand these implications further.


Subject(s)
Depression , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Liraglutide , Humans , Liraglutide/therapeutic use , Liraglutide/adverse effects , Male , Diabetes Mellitus, Type 2/drug therapy , Adult , Depression/drug therapy , Depression/chemically induced , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use
20.
Int J Biol Macromol ; 271(Pt 1): 132452, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777007

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Little is known about how gene expression and chromatin structure are regulated in NAFLD due to lack of suitable model. Ducks naturally develop fatty liver similar to serious human non-alcoholic fatty liver (NAFL) without adipose inflammation and liver fibrosis, thus serves as a good model for investigating molecular mechanisms of adipose metabolism and anti-inflammation. Here, we constructed a NAFLD model without adipose inflammation and liver fibrosis in ducks. By performing dynamic pathological and transcriptomic analyses, we identified critical genes involving in regulation of the NF-κB and MHCII signaling, which usually lead to adipose inflammation and liver fibrosis. We further generated dynamic three-dimensional chromatin maps during liver fatty formation and recovery. This showed that ducks enlarged hepatocyte cell nuclei to reduce inter-chromosomal interaction, decompress chromatin structure, and alter strength of intra-TAD and loop interactions during fatty liver formation. These changes partially contributed to the tight control the NF-κB and the MHCII signaling. Our analysis uncovers duck chromatin reorganization might be advantageous to maintain liver regenerative capacity and reduce adipose inflammation. These findings shed light on new strategies for NAFLD control.

SELECTION OF CITATIONS
SEARCH DETAIL
...