Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Biochem Biophys Res Commun ; 720: 150076, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38772224

ABSTRACT

Chronic morphine withdrawal memory formation is a complex process influenced by various molecular mechanisms. In this study, we aimed to investigate the contributions of the basolateral amygdala (BLA) and complement component 1, q subcomponent-like 3 (C1QL3), a secreted and presynaptically targeted protein, to the formation of chronic morphine (repeat dosing of morphine) withdrawal memory using conditioned place aversion (CPA) and chemogenetic methods. We conducted experiments involving the inhibition of the BLA during naloxone-induced withdrawal to assess its impact on CPA scores, providing insights into the significance of the BLA in the chronic morphine memory formation process. We also examined changes in C1ql3/C1QL3 expression within the BLA following conditioning. Immunofluorescence analysis revealed the colocalization of C1QL3 and the G protein-coupled receptor, brain-specific angiogenesis inhibitor 3 (BAI3) in the BLA, supporting their involvement in synaptic development. Moreover, we downregulated C1QL3 expression in the BLA to investigate its role in chronic morphine withdrawal memory formation. Our findings revealed that BLA inhibition during naloxone-induced withdrawal led to a significant reduction in CPA scores, confirming the critical role of the BLA in this memory process. Additionally, the upregulation of C1ql3 expression within the BLA postconditioning suggested its participation in withdrawal memory formation. The colocalization of C1QL3 and BAI3 in the BLA further supported their involvement in synaptic development. Furthermore, downregulation of C1QL3 in the BLA effectively hindered chronic morphine withdrawal memory formation, emphasizing its pivotal role in this process. Notably, we identified postsynaptic density protein 95 (PSD95) as a potential downstream effector of C1QL3 during chronic morphine withdrawal memory formation. Blocking PSD95 led to a significant reduction in the CPA score, and it appeared that C1QL3 modulated the ubiquitination-mediated degradation of PSD95, resulting in decreased PSD95 protein levels. This study underscores the importance of the BLA, C1QL3 and PSD95 in chronic morphine withdrawal memory formation. It provides valuable insights into the underlying molecular mechanisms, emphasizing their significance in this intricate process.

2.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745304

ABSTRACT

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Subject(s)
Mice, Inbred C57BL , PPAR gamma , Physical Conditioning, Animal , Pulmonary Disease, Chronic Obstructive , Wnt Signaling Pathway , Animals , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Wnt Signaling Pathway/physiology , Mice , Physical Conditioning, Animal/physiology , PPAR gamma/metabolism , Disease Models, Animal , Lung/metabolism , Lung/physiopathology , Inflammation/metabolism
3.
Article in English | MEDLINE | ID: mdl-38625125

ABSTRACT

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates pro-cellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.

4.
Res Sq ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559267

ABSTRACT

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

5.
Article in English | MEDLINE | ID: mdl-38683872

ABSTRACT

Although ventricular capture during the atrial threshold test is possible, there are rare reports on the insulation defect and inactive leads thereof. In this case, we present a pacemaker-dependent patient with a history of pacemaker generator replacements. The patient experienced ventricular capture induced by atrial pacing due to adhesion of the atrial and ventricular leads with an insulation defect. The atrial lead was abandoned and a new lead was implanted. However, there was a significant decrease in ventricular impedance detected shortly after the new lead was implanted. When observing the phenomenon of atrial pacing-induced ventricular depolarization, one uncommon reason to consider is lead adhesive wear. It is important to pay attention to the contact and bending sites of the leads.

6.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38471781

ABSTRACT

As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (p < 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.


Subject(s)
Electrocorticography , Scalp , Female , Humans , Sleep/physiology , Arousal/physiology , Wakefulness/physiology , Electroencephalography/methods
7.
J Org Chem ; 89(7): 4336-4348, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38465834

ABSTRACT

The chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine is the key core skeleton of potent Bruton's tyrosine kinase (BTK) inhibitor Zanubrutinib, and the catalyst-controlled asymmetric hydrogenation of planar multinuclear pyrimidine heteroarenes with multiple N atoms could provide an efficient route toward its synthesis. Owing to the strong aromaticity and poisoning effect toward chiral transition metal catalyst, asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines with multiple nitrogen atoms is still a challenge for synthesizing the chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]-pyrimidine. Herein, an efficient iridium-catalyzed asymmetric hydrogenation of pyrazolo[1,5-a]pyrimidines has been developed using substrate activation strategy, with up to 99% ee. The decagram scale synthesis further demonstrated the potential and promise of this procedure in the synthesis of Zanubrutinib. In addition, a mechanistic study indicated that the hydrogenation starts with 1,2-hydrogenation.

8.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496540

ABSTRACT

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

9.
Mol Psychiatry ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321120

ABSTRACT

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.

10.
Luminescence ; 39(2): e4689, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361140

ABSTRACT

A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.


Subject(s)
Chromium , Metal Nanoparticles , Polyethyleneimine , Polyethyleneimine/chemistry , Copper/chemistry , Spectrometry, Fluorescence/methods , Coloring Agents , Fluorescent Dyes/chemistry , Limit of Detection , Metal Nanoparticles/chemistry
11.
Plant Physiol Biochem ; 207: 108340, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199025

ABSTRACT

NIN-like proteins (NLPs) are evolutionarily conserved transcription factors that are unique to plants and play a pivotal role in responses to nitrate uptake and assimilation. However, a comprehensive analysis of NLP members in tea plants is lacking. The present study performed a genome-wide analysis and identified 33 NLP gene family members of Camellia sinensis that were distributed unequally across 5 chromosomes. Subcellular localisation predictions revealed that all CsNLP proteins were localised in the nucleus. Conservative domain analysis revealed that all of these proteins contained conserved RWP-RK and PB1 domains. Phylogenetic analysis grouped the CsNLP gene family into four clusters. The promoter regions of CsNLPs harboured cis-acting elements associated with plant hormones and abiotic stress responses. Expression profile analysis demonstrated that CsNLP8 was significantly upregulated in roots under nitrate stress conditions. Subcellular localisation analysis found CsNLP8 localised to the nucleus. Dual-luciferase reporter assay demonstrated that CsNLP8 positively regulated the expression of a nitrate transporter gene (CsNRT2.2). These findings provide a comprehensive characterisation of NLP genes in Camellia sinensis and offer insights into the biological function of CsNLP8 in regulating the response to nitrate-induced stress.


Subject(s)
Camellia sinensis , Nitrates , Nitrates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Camellia sinensis/genetics , Camellia sinensis/metabolism , Phylogeny , Tea , Gene Expression Regulation, Plant
12.
Eur Arch Otorhinolaryngol ; 281(4): 1819-1825, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38189968

ABSTRACT

BACKGROUND: Gastroesophageal reflux disease (GERD) and chronic rhinosinusitis (CRS) have been shown to be potentially closely related, but the relationship between these conditions, particularly the possibility of a causal link, is not fully understood. This study used Mendelian randomization (MR) to assess the causal relationship between these two disorders. METHODS: We extracted genome-wide association study data sets for GERD and CRS from publicly available gene summaries, and used MR to conduct a causal inference analysis. The main robustness test used in this study included MR-Egger regression, a leave-one-out sensitivity test, and multivariate MR (MVMR). RESULTS: GERD increased the risk of developing CRS by 36%, based on the inverse-variance weighted method, a statistically significant association (odds ratio [OR] 1.360, 95% confidence interval [CI] 1.179-1.568, P < 0.001). Other MR assessment methods, such as weighted median, simple mode, and weighted mode, similarly observed a significant increase in the risk of CRS occurrence (OR 1.434, 95% CI 1.186-1.734, P < 0.001; OR 1.927, 95% CI 1.166-3.184, P = 0.013; and OR 1.910, 95% CI 1.222-2.983, P = 0.006, respectively). No significant bias was found in the heterogeneity or pleiotropy tests (P = 0.071 and P = 0.700, respectively). Even after excluding possible mediators using MVMR, GERD appeared to significantly increase the risk of developing CRS (OR 1.013, 95% CI 1.008-1.023, P = 0.002). CONCLUSIONS: This study provides new, significant evidence that GERD is genetically associated with a higher incidence rate of CRS. However, further research is needed to elucidate the potential underlying biological mechanisms of this relationship.


Subject(s)
Gastroesophageal Reflux , Rhinosinusitis , Sinusitis , Humans , Genome-Wide Association Study , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/epidemiology , Causality , Cetirizine , Chronic Disease , Sinusitis/epidemiology , Sinusitis/genetics
13.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38234815

ABSTRACT

Sleep disturbances are prevalent in children with autism spectrum disorder (ASD) and have a major impact on the quality of life. Strikingly, sleep problems are positively correlated with the severity of ASD symptoms, such as memory impairment. However, the neural mechanisms underlying sleep disturbances and cognitive deficits in ASD are largely unexplored. Here, we show that non-rapid eye movement sleep (NREMs) is highly fragmented in the 16p11.2 deletion mouse model of ASD. The degree of sleep fragmentation is reflected in an increased number of calcium transients in the activity of locus coeruleus noradrenergic (LC-NE) neurons during NREMs. Exposure to a novel environment further exacerbates sleep disturbances in 16p11.2 deletion mice by fragmenting NREMs and decreasing rapid eye movement sleep (REMs). In contrast, optogenetic inhibition of LC-NE neurons and pharmacological blockade of noradrenergic transmission using clonidine reverse sleep fragmentation. Furthermore, inhibiting LC-NE neurons restores memory. Rabies-mediated unbiased screening of presynaptic neurons reveals altered connectivity of LC-NE neurons with sleep- and memory regulatory brain regions in 16p11.2 deletion mice. Our findings demonstrate that heightened activity of LC-NE neurons and altered brain-wide connectivity underlies sleep fragmentation in 16p11.2 deletion mice and identify a crucial role of the LC-NE system in regulating sleep stability and memory in ASD.

14.
PeerJ Comput Sci ; 10: e1764, 2024.
Article in English | MEDLINE | ID: mdl-38259887

ABSTRACT

With the exponential growth of network resources, recommendation systems have become successful at combating information overload. In intelligent recommendation systems, the prediction of click-through rates (CTR) plays a crucial role. Most CTR models employ a parallel network architecture to successfully capture explicit and implicit feature interactions. However, the existing models ignore two aspects. One limitation observed in most models is that they focus only on the interaction of paired term features, with no emphasis on modeling unary terms. The second issue is that most models input characteristics indiscriminately into parallel networks, resulting in network input oversharing. We propose a disentangled self-attention neural network based on information sharing (DSAN) for CTR prediction to simulate complex feature interactions. Firstly, an embedding layer transforms high-dimensional sparse features into low-dimensional dense matrices. Then, the disentangled multi-head self-attention learns the relationship between different features and is fed into a parallel network architecture. Finally, we set up a shared interaction layer to solve the problem of insufficient information sharing in parallel networks. Results from experiments conducted on two real-world datasets demonstrate that our proposed method surpasses existing methods in predictive accuracy.

15.
Luminescence ; 39(2): e4666, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38178772

ABSTRACT

We developed a facile strategy for the fabrication of red fluorescent carbon nanodots (R-CDs) and demonstrated their applications for Al3+ sensing. Red-emission carbon dots (CDs) were synthesized using a simple hydrothermal treatment with citric acid and urea as precursors, manifesting intriguing red-emission behaviour at 610 nm. With increasing Al3+ concentration, the fluorescence band at 610 nm decreased gradually. Monitoring the intrinsic fluorescence variation (I610nm ), as-prepared CDs were developed as an effective platform for fluorescent Al3+ sensing, with a linear range of 0.5-60.0 µM and a detection limit of 3.0 nM. More importantly, R-CDs have been applied successfully to the analysis of Al3+ in actual samples with satisfactory recoveries in the range 97.12-102.05%, which indicated that obtained CDs could be implemented as an effective tool for the identification and detection of Al3+ in actual samples.


Subject(s)
Quantum Dots , Fluorescent Dyes , Carbon , Solubility , Spectrometry, Fluorescence , Water
16.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-36203543

ABSTRACT

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.

17.
Mol Psychiatry ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38145987

ABSTRACT

Context-induced retrieval of drug withdrawal memory is one of the important reasons for drug relapses. Previous studies have shown that different projection neurons in different brain regions or in the same brain region such as the basolateral amygdala (BLA) participate in context-induced retrieval of drug withdrawal memory. However, whether these different projection neurons participate in the retrieval of drug withdrawal memory with same or different molecular pathways remains a topic for research. The present results showed that (1) BLA neurons projecting to the prelimbic cortex (BLA-PrL) and BLA neurons projecting to the nucleus accumbens (BLA-NAc) participated in context-induced retrieval of morphine withdrawal memory; (2) there was an increase in the expression of Arc and pERK in BLA-NAc neurons, but not in BLA-PrL neurons during context-induced retrieval of morphine withdrawal memory; (3) pERK was the upstream molecule of Arc, whereas D1 receptor was the upstream molecule of pERK in BLA-NAc neurons during context-induced retrieval of morphine withdrawal memory; (4) D1 receptors also strengthened AMPA receptors, but not NMDA receptors, -mediated glutamatergic input to BLA-NAc neurons via pERK during context-induced retrieval of morphine withdrawal memory. These results suggest that different projection neurons of the BLA participate in the retrieval of morphine withdrawal memory with diverse molecular pathways.

18.
J Adv Res ; 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38151116

ABSTRACT

INTRODUCTION: Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES: The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS: We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS: All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS: CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a potential influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.

19.
Ther Adv Respir Dis ; 17: 17534666231208633, 2023.
Article in English | MEDLINE | ID: mdl-37966017

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a complex chronic respiratory disease with cumulative impacts on multiple systems, exhibiting significant extrapulmonary impacts, and posing a serious public health problem. Skeletal muscle dysfunction is one of the most pronounced extrapulmonary effects in patients with COPD, which severely affects patient prognosis and mortality primarily through reduced productivity resulting from muscle structural and functional alterations. Although the detailed pathogenesis of COPD has not been fully determined, some researchers agree that oxidative stress plays a significant role. Oxidative stress not only catalyzes the progression of pulmonary symptoms but also drives the development of skeletal muscle dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), is a key transcription factor that regulates the antioxidant response and plays an enormous role in combating oxidative stress. In this review, we have summarized current research on oxidative stress damage to COPD skeletal muscle and analyzed the role of Nrf2 in improving skeletal muscle dysfunction in COPD through exercise. The results suggest that oxidative stress drives the occurrence and development of skeletal muscle dysfunction in COPD. Exercise may improve skeletal muscle dysfunction in patients with COPD by promoting the dissociation of Kelch-like ECH-associated protein 1 (Keap1) and Nrf2, inducing sequestosome1(p62) phosphorylation to bind with Keap1 competitively leading to Nrf2 stabilization and improving dynamin-related protein 1-dependent mitochondrial fission. Nrf2 may be a key target for exercise anti-oxidative stress to alleviate skeletal muscle dysfunction in COPD.


Subject(s)
NF-E2-Related Factor 2 , Pulmonary Disease, Chronic Obstructive , Humans , Antioxidants/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Muscle, Skeletal/metabolism , NF-E2-Related Factor 2/metabolism
20.
J Integr Med ; 21(6): 518-527, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37989696

ABSTRACT

Numerous randomised controlled trials have suggested the positive effects of acupuncture on chronic obstructive pulmonary disease (COPD). However, the underlying therapeutic mechanisms of acupuncture for COPD have not been clearly summarized yet. Inflammation is central to the development of COPD. In this review, we elucidate the effects and underlying mechanisms of acupuncture from an anti-inflammatory perspective based on animal studies. Cigarette smoke combined with lipopolysaccharide is often used to establish animal models of COPD. Electroacupuncture can be an effective intervention to improve inflammation in COPD, and Feishu (BL13) and Zusanli (ST36) can be used as basic acupoints in COPD animal models. Different acupuncture types can regulate different types of inflammatory cytokines; meanwhile, different acupuncture types and acupoint options have similar effects on modulating the level of inflammatory cytokines. In particular, acupuncture exerts anti-inflammatory effects by inhibiting the release of inflammatory cells, inflammasomes and inflammatory cytokines. The main underlying mechanism through which acupuncture improves inflammation in COPD is the modulation of relevant signalling pathways: nuclear factor-κB (NF-κB) (e.g., myeloid differentiation primary response 88/NF-κB, toll-like receptor-4/NF-κB, silent information regulator transcript-1/NF-κB), mitogen-activated protein kinase signalling pathways (extracellular signal-regulated kinase 1/2, p38 and c-Jun NH2-terminal kinase), cholinergic anti-inflammatory pathway, and dopamine D2 receptor pathway. The current synthesis will be beneficial for further research on the effect of acupuncture on COPD inflammation. Please cite this article as: Jiang LH, Li PJ, Wang YQ, Jiang ML, Han XY, Bao YD, Deng XL, Wu WB, Liu XD. Anti-inflammatory effects of acupuncture in the treatment of chronic obstructive pulmonary disease. J Integr Med. 2023; 21(6): 518-527.


Subject(s)
Acupuncture Therapy , Pulmonary Disease, Chronic Obstructive , Animals , NF-kappa B/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Cytokines , Disease Models, Animal , Inflammation/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...