Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Pestic Biochem Physiol ; 200: 105824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38582588

ABSTRACT

The slowpoke channel responds to the intracellular calcium concentration and the depolarization of the cell membrane. It plays an important role in maintaining the resting potential and regulating the homeostasis of neurons, but it can also regulate circadian rhythm, sperm capacitation, ethanol tolerance, and other physiological processes in insects. This renders it a potentially useful target for the development of pest control strategies. There are relatively few studies on the slowpoke channels in lepidopteran pests, and their pharmacological properties are still unclear. So, in this study, the slowpoke gene of Plutella xylostella (Pxslo) was heterologous expressed in HEK293T cells, and the I-V curve of the slowpoke channel was measured by whole cell patch clamp recordings. Results showed that the slowpoke channel could be activated at -20 mV with 150 µM Ca2+. The subsequent comparison of the electrophysiological characteristics of the alternative splicing site E and G deletions showed that the deletion of the E site enhances the response of the slowpoke channel to depolarization, while the deletion of the G site weakens the response of the slowpoke channel to depolarization. Meanwhile, the nonspecific inhibitors TEA and 4-AP of the Kv channels, and four pesticides were tested and all showed an inhibition effect on the PxSlo channel at 10 or 100 µM, suggesting that these pesticides also target the slowpoke channel. This study enriches our understanding of the slowpoke channel in Lepidopteran insects and can aid in the development of relevant pest management strategies.


Subject(s)
Moths , Pesticides , Animals , Male , Humans , Moths/genetics , Moths/metabolism , HEK293 Cells , Seeds , Pesticides/metabolism
2.
Am J Respir Cell Mol Biol ; 69(5): 584-591, 2023 11.
Article in English | MEDLINE | ID: mdl-37523713

ABSTRACT

Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.


Subject(s)
Actins , Receptors, Prostaglandin E, EP2 Subtype , Humans , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Histamine/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Dinoprostone , Muscle, Smooth/metabolism , Lung/metabolism , Cyclic AMP-Dependent Protein Kinases
3.
Respir Res ; 24(1): 157, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37316833

ABSTRACT

BACKGROUND: The recruitment of the actin-regulatory proteins cortactin and profilin-1 (Pfn-1) to the membrane is important for the regulation of actin cytoskeletal reorganization and smooth muscle contraction. Polo-like kinase 1 (Plk1) and the type III intermediate filament protein vimentin are involved in smooth muscle contraction. Regulation of complex cytoskeletal signaling is not entirely elucidated. The aim of this study was to evaluate the role of nestin (a type VI intermediate filament protein) in cytoskeletal signaling in airway smooth muscle. METHODS: Nestin expression in human airway smooth muscle (HASM) was knocked down by specific shRNA or siRNA. The effects of nestin knockdown (KD) on the recruitment of cortactin and Pfn-1, actin polymerization, myosin light chain (MLC) phosphorylation, and contraction were evaluated by cellular and physiological approaches. Moreover, we assessed the effects of non-phosphorylatable nestin mutant on these biological processes. RESULTS: Nestin KD reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Moreover, contractile stimulation enhanced nestin phosphorylation at Thr-315 and the interaction of nestin with Plk1. Nestin KD also diminished phosphorylation of Plk1 and vimentin. The expression of T315A nestin mutant (alanine substitution at Thr-315) reduced the recruitment of cortactin and Pfn-1, actin polymerization, and HASM contraction without affecting MLC phosphorylation. Furthermore, Plk1 KD diminished nestin phosphorylation at this residue. CONCLUSIONS: Nestin is an essential macromolecule that regulates actin cytoskeletal signaling via Plk1 in smooth muscle. Plk1 and nestin form an activation loop during contractile stimulation.


Subject(s)
Actins , Cortactin , Humans , Nestin/genetics , Vimentin , Cortactin/genetics , Cytoskeleton
4.
Infect Drug Resist ; 16: 999-1008, 2023.
Article in English | MEDLINE | ID: mdl-36824068

ABSTRACT

Purpose: We aimed to evaluate antibiotic resistance and molecular epidemiological characteristics of non-invasive Haemophilus influenzae (H. influenzae) from pneumonia patients and analyze the whole genome of one invasive H. influenzae isolated from blood in pediatric patients. Methods: Antibiotic susceptibility was tested using the turbidimetric method. ß-lactamase-producing and serotyping genes were evaluated via multiplex polymerase chain reaction (PCR), and ftsI was amplified using high-fidelity PCR. Lastly, whole genome sequencing (WGS) was conducted using Illumina HiSeq and PacBio sequencing technology. Results: We observed that the ampicillin (AMP) and amoxicillin/clavulanate (AMC) resistance rates of non-invasive H. influenzae were as high as 99.06% (after adjustment) and 49.53%, respectively. The ß-lactamase gene of 106 AMP-resistant strains was blaTEM-1 . Group III-like mutation accounted for 71.15% of ß-lactamase-positive, AMC-resistant (BLPACR) strain mutants. The novel Asn-526→His mutation was present in one ß-lactamase-negative AMP-susceptible (BLNAS) strain. Non-invasive H. influenzae strains all belonged to non-typeable H. influenzae (NTHi). In contrast, the invasive H. influenzae 108 isolated from blood in China belonged to H. influenzae type b (Hib). It belonged to sequence typing ST95 and exhibited sensitivity to all 11 antibiotics. Three prophages were identified, and the capb loci of the H. influenzae strain 108 revealed regions I-III exist in duplicate; however, complete deletion of IS1016 was only present in one of the copies. Conclusion: Non-invasive H. influenzae NTHi with ß-lactamase-positive was highly prevalent. Notably, group III-like mutations had increased prevalence among BLPACR strains. H. influenzae belonging to Hib and ST95 was first reported to cause sepsis in China.

5.
iScience ; 25(2): 103833, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198891

ABSTRACT

Asthma is a complex pulmonary disorder with multiple pathological mechanisms. A key pathological feature of chronic asthma is airway remodeling, which is largely attributed to airway smooth muscle (ASM) hyperplasia that contributes to thickening of the airway wall and further drives asthma pathology. The cellular processes that mediate ASM cell proliferation are not completely elucidated. Using multiple approaches, we demonstrate that the adapter protein Abi1 (Abelson interactor 1) is upregulated in ∼50% of ASM cell cultures derived from patients with asthma. Loss-of-function studies demonstrate that Abi1 regulates the activation of Jak2 (Janus kinase 2) and STAT3 (signal transducers and activators of transcription 3) as well as the proliferation of both nonasthmatic and asthmatic human ASM cell cultures. These findings identify Abi1 as a molecular switch that activates Jak2 kinase and STAT3 in ASM cells and demonstrate that a dysfunctional Abi1-associated pathway contributes to the progression of asthma.

6.
IEEE Trans Cybern ; 52(12): 13120-13128, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34428170

ABSTRACT

In this article, vibration abatement problems of a riser system with system uncertainty, input deadzone, and output constraint are considered. For obtaining better control precision, a boundary control law is constructed by employing the backstepping method and Lyapunov's theory. The output constraint is guaranteed by utilizing a barrier Lyapunov function. Adaptive neural networks are designed to cope with the uncertainty of the riser and compensate for the effect caused by the asymmetric deadzone nonlinearity. With the designed controller, the output constraint is satisfied, and the system stability is guaranteed through Lyapunov synthesis. In the end, numerical simulation results are provided to display the performance of the developed adaptive neural network boundary control law.


Subject(s)
Algorithms , Nonlinear Dynamics , Feedback , Neural Networks, Computer , Computer Simulation
7.
Redox Biol ; 48: 102205, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34891098

ABSTRACT

Hemolysis, a pathological component of many diseases, is associated with thrombosis and vascular dysfunction. Hemolytic products, including cell-free hemoglobin and free heme directly activate platelets. However, the effect of hemolysis on platelet degranulation, a central process in not only thrombosis, but also inflammatory and mitogenic signaling, remains less clear. Our group showed that hemoglobin-induced platelet activation involved the production of mitochondrial reactive oxygen species (mtROS). However, the molecular mechanism by which extracellular hemolysis induces platelet mtROS production, and whether these mtROS regulate platelet degranulation remains unknown. Here, we demonstrate using isolated human platelets that cell free heme is a more potent agonist for platelet activation than hemoglobin, and stimulates the release of a specific set of molecules, including the glycoprotein thrombospondin-1 (TSP-1), from the α-granule of platelets. We uncover the mechanism of heme-mediated platelet mtROS production which is dependent on the activation of platelet toll-like receptor 4 (TLR4) signaling and leads to the downstream phosphorylation and inhibition of complex-V by the serine kinase Akt. Notably, inhibition of platelet TLR4 or Akt, or scavenging of mtROS prevents heme-induced granule release in vitro. Further, heme-dependent granule release is significantly attenuated in vivo in mice lacking TLR4 or those treated with the mtROS scavenger MitoTEMPO. These data elucidate a novel mechanism of TLR4-mediated mitochondrial regulation, establish the mechanistic link between hemolysis and platelet degranulation, and begin to define the heme and mtROS-dependent platelet secretome. These data have implications for hemolysis-induced thrombo-inflammatory signaling and for the consideration of platelet mitochondria as a therapeutic target in hemolytic disorders.

8.
Infect Drug Resist ; 14: 2925-2932, 2021.
Article in English | MEDLINE | ID: mdl-34349527

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate the prevalence of mobile colistin resistance genes (mcr) in Gram-negative bacteria and to analyze the molecular characteristics of mcr-1 positive Salmonella typhimurium strain 75 and Escherichia coli strain 107 from the Quanzhou Women's and Children's Hospital in China. METHODS: The genes mcr-1 through mcr-9 were screened via multiplex PCR. Antibiotic susceptibility was detected using a GN11 card with the VITEK-2 compact automated system. Whole genomes were sequenced using PacBio's single molecule real-time (SMRT) technology. RESULTS: In this study, mcr-1 was detected in only four strains, with a positivity rate of 0.65% (4/616). All the four strains were resistant to more than three different kinds of antibiotics. The mcr-1 positive S. typhimurium strain 75 harbored IncHI2 plasmid, which carried mcr-1 gene, while the mcr-1 positive E. coli strain 107 contained four plasmids including one mcr-1 harboring IncHI2 plasmid, one IncFII plasmid and two IncI1-I (Alpha) plasmids. Mobile elements carrying mcr-1 in the 75_plasmid and 107_plasmid-1 were located in the IS1086(ISApl1)-IS30A(ISApl1)-mcr-1-hp and IS1086(ISApl1)-mcr-1-hp regions, respectively. Tn6010 carrying drug efflux pump genes was found in 75_plasmid, while cn_31611_IS26 carrying multi-drug resistance (MDR) genes were found in 107_plasmid-1. CONCLUSION: This study found that mcr-1 was prevalent at a low frequency in the Quanzhou Women's and Children's Hospital. A similar genetic pattern of mcr-1 transmission was found in both E. coli and S. typhimurium.

9.
FASEB J ; 35(9): e21811, 2021 09.
Article in English | MEDLINE | ID: mdl-34369620

ABSTRACT

Actin cytoskeletal reorganization plays an important role in regulating smooth muscle contraction, which is essential for the modulation of various physiological functions including airway tone. The adapter protein Abi1 (Abelson interactor 1) participates in the control of smooth muscle contraction. The mechanisms by which Abi1 coordinates smooth muscle function are not fully understood. Here, we found that contractile stimulation elicited Abi1 acetylation in human airway smooth muscle (HASM) cells. Mutagenesis analysis identified lysine-416 (K416) as a major acetylation site. Replacement of K416 with Q (glutamine) enhanced the interaction of Abi1 with neuronal Wiskott-Aldrich syndrome protein (N-WASP), an important actin-regulatory protein. Moreover, the expression of K416Q Abi1 promoted actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19 and vimentin phosphorylation at Ser-56. Furthermore, p300 is a lysine acetyltransferase that catalyzes acetylation of histone and non-histone proteins in various cell types. Here, we discovered that a portion of p300 was localized in the cytoplasm of HASM cells. Knockdown of p300 reduced the agonist-induced Abi1 acetylation in HASM cells and in mouse airway smooth muscle tissues. Smooth muscle conditional knockout of p300 inhibited actin polymerization and the contraction of airway smooth muscle tissues without affecting myosin light chain phosphorylation and vimentin phosphorylation. Together, our results suggest that contractile stimulation induces Abi1 acetylation via p300 in smooth muscle. Acetylation at K416 promotes the coupling of Abi1 with N-WASP, which facilitates actin polymerization and smooth muscle contraction. This is a novel acetylation-dependent regulation of the actin cytoskeleton in smooth muscle.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cytoskeletal Proteins/metabolism , Muscle Contraction/physiology , Muscle, Smooth/metabolism , Acetylation , Animals , Cells, Cultured , E1A-Associated p300 Protein/metabolism , Humans , Lysine Acetyltransferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Smooth Muscle/metabolism , Myosin Light Chains/metabolism , Phosphorylation/physiology , Signal Transduction/physiology , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
10.
J Thromb Haemost ; 19(9): 2256-2262, 2021 09.
Article in English | MEDLINE | ID: mdl-33724688

ABSTRACT

BACKGROUND: Sickle cell disease (SCD) is characterized by hemolysis-associated platelet dysfunction that leads to increased risk of thrombosis and plays a role in the high morbidity and mortality of the disease. The mechanisms by which hemolysis induces platelet activation remain unclear. We recently demonstrated that patients with SCD showed increased platelet mitochondrial reactive oxygen species (mtROS) production that correlates with markers of hemolysis and platelet activation. Experiments in isolated platelets demonstrated that mtROS stimulated platelet activation. However, the role of hemolysis-induced mtROS in thrombus formation in vivo remains unclear. OBJECTIVES: Here, we hypothesize that scavenging of mtROS attenuates the propensity for thrombosis in mouse models of hemolysis. METHODS: We used models of hemolysate infusion into wildtype mice as well as the Berkley transgenic mouse model of SCD, a chronic mode of hemolysis, to test the effect of hemolysis on platelet mtROS production and thrombosis. RESULTS: We show that infusion of hemolysate in wildtype mice induces platelet mtROS production and decreases time to vessel occlusion in a model of ferric chloride-induced carotid artery thrombosis. Increased mtROS and propensity for thrombosis was also observed in the Berkley transgenic mouse model of SCD. Notably, treatment with mtROS scavengers decreased platelet mtROS levels and attenuated the propensity for thrombus formation in both models. CONCLUSIONS: These data demonstrate that mtROS significantly contribute to the mechanism of hemolysis-induced thrombosis in vivo and suggest a potential role for mitochondrially targeted antioxidant therapy in hemolysis and SCD-related thrombosis.


Subject(s)
Anemia, Sickle Cell , Thrombosis , Anemia, Sickle Cell/drug therapy , Animals , Disease Models, Animal , Humans , Mice , Platelet Activation , Reactive Oxygen Species , Thrombosis/prevention & control
11.
Nitric Oxide ; 104-105: 36-43, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32891753

ABSTRACT

It is well established that myoglobin supports mitochondrial respiration through the storage and transport of oxygen as well as through the scavenging of nitric oxide. However, during ischemia/reperfusion (I/R), myoglobin and mitochondria both propagate myocardial injury through the production of oxidants. Nitrite, an endogenous signaling molecule and dietary constituent, mediates potent cardioprotection after I/R and this effect relies on its interaction with both myoglobin and mitochondria. While independent mechanistic studies have demonstrated that nitrite-mediated cardioprotection requires the presence of myoglobin and the post-translational S-nitrosation of critical cysteine residues on mitochondrial complex I, it is unclear whether myoglobin directly catalyzes the S-nitrosation of complex I or whether mitochondrial-dependent nitrite reductase activity contributes to S-nitrosation. Herein, using purified myoglobin and isolated mitochondria, we characterize and directly compare the nitrite reductase activities of mitochondria and myoglobin and assess their contribution to mitochondrial S-nitrosation. We demonstrate that myoglobin is a significantly more efficient nitrite reductase than isolated mitochondria. Further, deoxygenated myoglobin catalyzes the nitrite-dependent S-nitrosation of mitochondrial proteins. This reaction is enhanced in the presence of oxidized (Fe3+) myoglobin and not significantly affected by inhibitors of mitochondrial respiration. Using a Chinese Hamster Ovary cell model stably transfected with human myoglobin, we show that both myoglobin and mitochondrial complex I expression are required for nitrite-dependent attenuation of cell death after anoxia/reoxygenation. These data expand the understanding of myoglobin's role both as a nitrite reductase to a mediator of S-nitrosation and as a regulator of mitochondrial function, and have implications for nitrite-mediated cardioprotection after I/R.


Subject(s)
Cytoprotection/physiology , Mitochondria/metabolism , Myoglobin/metabolism , Nitrite Reductases/metabolism , Nitrites/metabolism , Animals , CHO Cells , Cell Hypoxia/physiology , Cricetulus , Cysteine/chemistry , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Nitrosation
12.
Sci Rep ; 10(1): 10667, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606387

ABSTRACT

Smooth muscle cell migration is essential for many diverse biological processes such as pulmonary/cardiovascular development and homeostasis. Abi1 (Abelson interactor 1) is an adapter protein that has been implicated in nonmuscle cell migration. However, the role and mechanism of Abi1 in smooth muscle migration are largely unknown. Here, Abi1 knockdown by shRNA reduced human airway smooth muscle cell migration, which was restored by Abi1 rescue. Abi1 localized at the tip of lamellipodia and its protrusion coordinated with F-actin at the leading cell edge of live cells. In addition, we identified profilin-1 (Pfn-1), a G-actin transporter, as a new partner for Abi1. Abi1 knockdown reduced the recruitment of Pfn-1 to the leading cell edge. Moreover, Abi1 knockdown reduced the localization of the actin-regulatory proteins c-Abl (Abelson tyrosine kinase) and N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) at the cell edge without affecting other migration-related proteins including pVASP (phosphorylated vasodilator stimulated phosphoprotein), cortactin and vinculin. Furthermore, we found that c-Abl and integrin ß1 regulated the positioning of Abi1 at the leading edge. Taken together, the results suggest that Abi1 regulates cell migration by affecting Pfn-1 and N-WASP, but not pVASP, cortactin and focal adhesions. Integrin ß1 and c-Abl are important for the recruitment of Abi1 to the leading edge.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Movement/physiology , Cytoskeletal Proteins/metabolism , Muscle, Smooth/metabolism , Myocytes, Smooth Muscle/metabolism , Adolescent , Cells, Cultured , Cortactin/metabolism , Female , Focal Adhesions/metabolism , Humans , Integrin beta1/metabolism , Male , Profilins/metabolism , Pseudopodia/metabolism , Vinculin/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism
13.
Am J Respir Cell Mol Biol ; 62(5): 645-656, 2020 05.
Article in English | MEDLINE | ID: mdl-31913659

ABSTRACT

It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Lung/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Polymerization , Protein Serine-Threonine Kinases/metabolism , Acetylcholine/pharmacology , Actin Cytoskeleton/drug effects , Adult , Biocatalysis/drug effects , Cell Cycle Proteins/metabolism , Female , Histamine/pharmacology , Humans , Male , Middle Aged , Models, Biological , Multiprotein Complexes/metabolism , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Myosin Light Chains/metabolism , Paxillin/metabolism , Phosphorylation/drug effects , Phosphoserine/metabolism , Phosphotyrosine/metabolism , Proto-Oncogene Proteins/metabolism , Serotonin/pharmacology , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Polo-Like Kinase 1
14.
Allergy ; 75(4): 841-852, 2020 04.
Article in English | MEDLINE | ID: mdl-31833571

ABSTRACT

BACKGROUND: Asthma is a complicated chronic inflammatory disorder characterized by airway inflammation and bronchial hyperresponsiveness. Group 2 innate lymphoid cells (ILC2) are tissue-resident innate effector cells that can mediate airway inflammation and hyperresponsiveness through production of IL-5, IL-13 and VEGFA. ILC2 in asthma patients exhibit an activated phenotype. However, molecular pathways that control ILC2 activation are not well understood. METHODS: MYC expression was examined in ILC2 sorted from peripheral blood of healthy controls and asthma patients or cultured with or without activating cytokines. CRISPR knockout technique was used to delete c-Myc in primary murine lung ILC2 or an ILC2 cell line. Cell proliferation was examined, gene expression pattern was profiled by genome-wide microarray analysis, and direct gene targets were identified by Chromatin immunoprecipitation (ChIP). ILC2 responses, airway inflammation and airway hyperresponsiveness were examined in Balb/c mice challenged with Alternaria extracts, with or without treatment with JQ1. RESULTS: ILC2 from asthma patients expressed increased amounts of MYC. Deletion of c-Myc in ILC2 results in reduced proliferation, decreased cytokine production, and reduced expression of many lymphocyte activation genes. ChIP identified Stat6 as a direct gene target of c-Myc in ILC2. In vivo inhibition of c-Myc by JQ1 treatment repressed ILC2 activity and suppressed Alternaria-induced airway inflammation and AHR. CONCLUSION: c-Myc expression is upregulated during ILC2 activation. c-Myc is essential for ILC2 activation and their in vivo pathogenic effects. These findings suggest that targeting c-Myc may unlock novel strategies to combat asthma or asthma exacerbation.


Subject(s)
Asthma , Lymphocytes , Animals , Asthma/genetics , Cytokines , Humans , Immunity, Innate , Interleukin-13 , Interleukin-33 , Lung , Mice , Mice, Knockout , Proto-Oncogene Proteins c-myc
16.
PLoS One ; 14(7): e0220490, 2019.
Article in English | MEDLINE | ID: mdl-31365585

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is characterized by elevated pulmonary artery pressure but classified into subgroups based on disease etiology. It is established that systemic bioenergetic dysfunction contributes to the pathogenesis of pulmonary arterial hypertension classified as World Health Organization (WHO) Group 1. Consistent with this, we previously showed that platelets from Group 1 PH patients demonstrate increased glycolysis and enhanced maximal capacity for oxidative phosphorylation, which is due to increased fatty acid oxidation (FAO). However, it remains unclear whether identical mitochondrial alterations contribute to the pathology of other PH subgroups. The most prevalent subgroup of PH is WHO Group 2, which encompasses pulmonary venous hypertension secondary to left heart disease. Here, we hypothesized that platelets from Group 2 subjects show bioenergetic alteration compared to controls, and that these changes were similar to Group 1 PH patients. METHOD AND RESULTS: We isolated platelets from subjects with Group 2 PH and controls (n = 20) and measured platelet bioenergetics as well as hemodynamic parameters. We demonstrate that Group 2 PH platelets do not show a change in glycolytic rate but do demonstrate enhanced maximal capacity of respiration due at least partially to increased FAO. Moreover, this enhanced maximal capacity correlates negatively with right ventricular stroke work index and is not changed by administration of inhaled nitrite, a modulator of pulmonary hemodynamics. CONCLUSIONS: These data demonstrate that Group 2 PH subjects have altered bioenergetic function though this alteration is not identical to that of Group 1 PH. The implications of this alteration for disease pathogenesis will be discussed.


Subject(s)
Blood Platelets/physiology , Energy Metabolism , Heart Failure/physiopathology , Hemodynamics , Hypertension, Pulmonary/physiopathology , Mitochondria/physiology , Aged , Case-Control Studies , Female , Glycolysis , Humans , Male , Oxidative Phosphorylation , Stroke Volume
17.
J Biol Chem ; 294(18): 7269-7282, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30872402

ABSTRACT

Myoglobin is a monomeric heme protein expressed ubiquitously in skeletal and cardiac muscle and is traditionally considered to function as an oxygen reservoir for mitochondria during hypoxia. It is now well established that low concentrations of myoglobin are aberrantly expressed in a significant proportion of breast cancer tumors. Despite being expressed only at low levels in these tumors, myoglobin is associated with attenuated tumor growth and a better prognosis in breast cancer patients, but the mechanism of this myoglobin-mediated protection against further cancer growth remains unclear. Herein, we report a signaling pathway by which myoglobin regulates mitochondrial dynamics and thereby decreases cell proliferation. We demonstrate in vitro that expression of human myoglobin in MDA-MB-231, MDA-MB-468, and MCF7 breast cancer cells induces mitochondrial hyperfusion by up-regulating mitofusins 1 and 2, the predominant catalysts of mitochondrial fusion. This hyperfusion causes cell cycle arrest and subsequent inhibition of cell proliferation. Mechanistically, increased mitofusin expression was due to myoglobin-dependent free-radical production, leading to the oxidation and degradation of the E3 ubiquitin ligase parkin. We recapitulated this pathway in a murine model in which myoglobin-expressing xenografts exhibited decreased tumor volume with increased mitofusin, markers of cell cycle arrest, and decreased parkin expression. Furthermore, in human triple-negative breast tumor tissues, mitofusin and myoglobin levels were positively correlated. Collectively, these results elucidate a new function for myoglobin as a modulator of mitochondrial dynamics and reveal a novel pathway by which myoglobin decreases breast cancer cell proliferation and tumor growth by up-regulating mitofusin levels.


Subject(s)
Breast Neoplasms/pathology , Cell Proliferation/physiology , Mitochondrial Dynamics/physiology , Myoglobin/physiology , Animals , Cell Line, Tumor , Female , G1 Phase/physiology , GTP Phosphohydrolases/metabolism , Heterografts , Humans , Mice , Mitochondrial Membrane Transport Proteins/metabolism , Oxidation-Reduction , S Phase/physiology , Ubiquitin-Protein Ligases/metabolism
18.
Contraception ; 99(2): 125-130, 2019 02.
Article in English | MEDLINE | ID: mdl-30439359

ABSTRACT

OBJECTIVE: To evaluate the effect of investigational vaginal rings containing nomegestrol acetate (NOMAC) plus 17ß-estradiol (E2) or etonogestrel (ENG) plus E2 in women with moderate to severe primary dysmenorrhea. STUDY DESIGN: This was a Phase 2b randomized, placebo-controlled, multicenter, double-blind study. We randomized participants to one of five treatment groups: four hormonal rings and one placebo ring. The investigational vaginal rings released 300 µg of E2 daily along with 700 µg or 900 µg of NOMAC or 100 µg or 125 µg of ENG. Each participant received 2 identical rings and was to insert each for 21 days followed by a 7-day ring-free period. The primary endpoint, as assessed by a daily electronic diary (e-Diary), was the change in menstrual pain score from baseline to the second in-treatment withdrawal bleeding episode (Cycle 2). The pain score was the mean of the three highest scores for menstrual cramping pain (0-4 point scale) recorded from the day before menses to the third day of bleeding. The primary hypothesis was that at least one investigational vaginal ring would demonstrate a statistically significant larger reduction from baseline in pain score compared to placebo. Secondary endpoints included total mean impact score (which assessed the negative impact on work/school, physical activities, leisure/social activities) and the amount and days of rescue medication (ibuprofen) used. CLINICAL TRIAL REGISTRATION NUMBER: NCT01670656. RESULTS: We randomized 439 participants. The mean pain score decreased from baseline to Cycle 2 in all groups; the decrease in all four treatment groups compared to placebo was statistically significant (p-values ≤0.002). All treatment groups had greater reductions than placebo in ibuprofen intake and greater improvement in impact scores; these differences were statistically significant for both endpoints for the ENG-E2 100/300 µg/day group, while the other groups were not statistically significant for one or both endpoints. CONCLUSION: All four investigational rings produced a statistically significantly larger reduction from baseline in mean menstrual pain score compared to placebo while pain medication use decreased. IMPLICATIONS: This placebo-controlled study provides evidence that vaginal contraceptive rings containing NOMAC-E2 or ENG-E2 improve moderate to severe dysmenorrhea, across all of doses studied. This adds to the evidence that hormonal contraceptives are effective treatments for dysmenorrhea.


Subject(s)
Contraceptive Agents, Hormonal/administration & dosage , Desogestrel/administration & dosage , Dysmenorrhea/drug therapy , Megestrol/administration & dosage , Norpregnadienes/administration & dosage , Progesterone Congeners/administration & dosage , Adult , Contraceptive Devices, Female , Double-Blind Method , Estradiol/administration & dosage , Female , Humans , Treatment Outcome , Young Adult
19.
J Cell Sci ; 132(1)2019 01 02.
Article in English | MEDLINE | ID: mdl-30559247

ABSTRACT

The tyrosine kinase c-Abl participates in the regulation of various cellular functions including cell proliferation, adhesion, migration, smooth muscle contraction and cancer progression. However, knowledge regarding transcriptional regulation of c-Abl is surprisingly limited. Sp1 is a founding member of the Sp1 transcription factor family that has been implicated in housekeeping gene expression, tumor cell proliferation and differentiation. Here, we show that knockdown and rescue of Sp1 affected growth factor-mediated c-Abl expression in cells. c-Abl promoter activity was also affected by Sp1 knockdown. This is the first evidence to suggest that Sp1 is an important transcription factor to regulate c-Abl expression. In addition, Sp1 phosphorylation at Thr-453 and Thr-739 has been proposed to regulate its activity in Drosophila cells. We unexpectedly found that growth factors did not induce Sp1 phosphorylation at these two residues. In contrast, growth factor stimulation upregulated Sp1 expression. Intriguingly, inhibition of ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) reduced expression of Sp1 and c-Abl. Furthermore, c-Abl knockdown diminished ERK1/2 phosphorylation and Sp1 expression. Taken together, these studies suggest that Sp1 can modulate c-Abl expression at transcription level. Conversely, c-Abl affects ERK1/2 activation and Sp1 expression in cells.


Subject(s)
Cell Proliferation , Gene Expression Regulation , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocytes, Smooth Muscle/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Sp1 Transcription Factor/metabolism , Bronchi/cytology , Bronchi/metabolism , Cells, Cultured , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Myocytes, Smooth Muscle/cytology , Phosphorylation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-abl/genetics , Signal Transduction , Sp1 Transcription Factor/genetics , Transcriptional Activation
20.
Redox Biol ; 15: 277-283, 2018 05.
Article in English | MEDLINE | ID: mdl-29304478

ABSTRACT

Nitrite represents an endocrine reserve of bioavailable nitric oxide (NO) that mediates a number of physiological responses including conferral of cytoprotection after ischemia/reperfusion (I/R). It has long been known that nitrite can react with non-heme iron to form dinitrosyliron complexes (DNIC). However, it remains unclear how quickly nitrite-dependent DNIC form in vivo, whether formation kinetics differ from that of NO-dependent DNIC, and whether DNIC play a role in the cytoprotective effects of nitrite. Here we demonstrate that chronic but not acute nitrite supplementation increases DNIC concentration in the liver and kidney of mice. Although DNIC have been purported to have antioxidant properties, we show that the accumulation of DNIC in vivo is not associated with nitrite-dependent cytoprotection after hepatic I/R. Further, our data in an isolated mitochondrial model of anoxia/reoxygenation show that while NO and nitrite demonstrate similar S-nitrosothiol formation kinetics, DNIC formation is significantly greater with NO and associated with mitochondrial dysfunction as well as inhibition of aconitase activity. These data are the first to directly compare mitochondrial DNIC formation by NO and nitrite. This study suggests that nitrite-dependent DNIC formation is a physiological consequence of dietary nitrite. The data presented herein implicate mitochondrial DNIC formation as a potential mechanism underlying the differential cytoprotective effects of nitrite and NO after I/R, and suggest that DNIC formation is potentially responsible for the cytotoxic effects observed at high NO concentrations.


Subject(s)
Antioxidants/metabolism , Iron/metabolism , Liver/metabolism , Mitochondria/metabolism , Nitric Oxide/biosynthesis , Nitrogen Oxides/metabolism , Aconitate Hydratase/metabolism , Animals , Antioxidants/chemistry , Cytoprotection/drug effects , Hypoxia/metabolism , Hypoxia/pathology , Iron/chemistry , Kidney/metabolism , Kidney/pathology , Liver/pathology , Mice , Mitochondria/pathology , Nitric Oxide/metabolism , Nitrites/chemistry , Nitrites/metabolism , Nitrogen Oxides/chemistry , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , S-Nitrosothiols/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...