Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Internet Res ; 26: e51698, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718390

ABSTRACT

BACKGROUND: Nonprofit organizations are increasingly using social media to improve their communication strategies with the broader population. However, within the domain of human service nonprofits, there is hesitancy to fully use social media tools, and there is limited scope among organizational personnel in applying their potential beyond self-promotion and service advertisement. There is a pressing need for greater conceptual clarity to support education and training on the varied reasons for using social media to increase organizational outcomes. OBJECTIVE: This study leverages the potential of Twitter (subsequently rebranded as X [X Corp]) to examine the online communication content within a sample (n=133) of nonprofit sexual assault (SA) centers in Canada. To achieve this, we developed a typology using a qualitative and supervised machine learning model for the automatic classification of tweets posted by these centers. METHODS: Using a mixed methods approach that combines machine learning and qualitative analysis, we manually coded 10,809 tweets from 133 SA centers in Canada, spanning the period from March 2009 to March 2023. These manually labeled tweets were used as the training data set for the supervised machine learning process, which allowed us to classify 286,551 organizational tweets. The classification model based on supervised machine learning yielded satisfactory results, prompting the use of unsupervised machine learning to classify the topics within each thematic category and identify latent topics. The qualitative thematic analysis, in combination with topic modeling, provided a contextual understanding of each theme. Sentiment analysis was conducted to reveal the emotions conveyed in the tweets. We conducted validation of the model with 2 independent data sets. RESULTS: Manual annotation of 10,809 tweets identified seven thematic categories: (1) community engagement, (2) organization administration, (3) public awareness, (4) political advocacy, (5) support for others, (6) partnerships, and (7) appreciation. Organization administration was the most frequent segment, and political advocacy and partnerships were the smallest segments. The supervised machine learning model achieved an accuracy of 63.4% in classifying tweets. The sentiment analysis revealed a prevalence of neutral sentiment across all categories. The emotion analysis indicated that fear was predominant, whereas joy was associated with the partnership and appreciation tweets. Topic modeling identified distinct themes within each category, providing valuable insights into the prevalent discussions surrounding SA and related issues. CONCLUSIONS: This research contributes an original theoretical model that sheds light on how human service nonprofits use social media to achieve their online organizational communication objectives across 7 thematic categories. The study advances our comprehension of social media use by nonprofits, presenting a comprehensive typology that captures the diverse communication objectives and contents of these organizations, which provide content to expand training and education for nonprofit leaders to connect and engage with the public, policy experts, other organizations, and potential service users.


Subject(s)
Organizations, Nonprofit , Social Media , Social Media/statistics & numerical data , Humans , Canada , Machine Learning
2.
Sci Total Environ ; 921: 171101, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38387595

ABSTRACT

Recent epidemiological and animal studies have indicated that ambient fine particulate matter (PM2.5) exposure during pregnancy is closely associated with intrauterine growth restriction (IUGR). However, the underlying mechanisms remain to be revealed. In this study, we found that gestational exposure to PM2.5 significantly decreased fetal weight and crown-rump length in mice, accompanied by insufficient placental trophoblast syncytialization and increased expression of progranulin (PGRN) in mice placenta. Administering PGRN neutralizing antibody to pregnant mice alleviated growth restriction and insufficient placental trophoblast syncytialization caused by PM2.5, accompanied with suppressed activation of the mTOR signaling pathway. Furthermore, in vitro experiments using human placental BeWo cells showed that 10 µg·mL-1 PM2.5 activated PGRN/mTOR signaling and suppressed forskolin-induced cell fusion, which was blocked by knockdown of PGRN. Taken together, our results demonstrated that PM2.5 exposure during pregnancy inhibited placental trophoblast syncytialization by activating PGRN/mTOR signaling, leading to abnormal placental development and IUGR. This study reveals a novel mechanism underlying the developmental toxicity of PM2.5 exposure during pregnancy.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Humans , Animals , Mice , Placenta/metabolism , Progranulins/toxicity , Progranulins/metabolism , Trophoblasts/metabolism , Signal Transduction , Fetal Development , Fetal Growth Retardation , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism
3.
Chemosphere ; 344: 140369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802477

ABSTRACT

Pregnancy is a unique physiological stage for females as well as a vulnerable period for pollutant exposure. The effect of gestational ambient fine particulate matter (PM2.5) exposure on maternal lipid metabolism during pregnancy is rarely observed, and the mechanism is unknown. In the current study, pregnant C57BL/6 mice were randomly assigned to either ambient PM2.5 or filtered air exposure chambers since gestational day (GD) 0. Meanwhile, non-pregnant female mice were housed as controls in each exposure chamber. PM2.5 exposure exerted no significant effect on body weight gain or the body composition during pregnancy. Pregnant mice exposed to PM2.5 demonstrated improved glucose tolerance, whereas non-pregnant mice showed an increased fasting blood glucose level after PM2.5 exposure with no alterations in glucose tolerance. PM2.5 exposure exerted no significant effect on total lipid content in serum during pregnancy, while an increased serum total lipid level was found in non-pregnant mice exposed to PM2.5. PM2.5 exposure had no effect on total liver lipid levels, it increased several triacylglycerol (TAG) species and total cholesterol esters (CEs) in pregnant mice but lowered a considerable amount in non-pregnant mice' livers. Furthermore, gestational exposure to PM2.5 enhanced the expression of key enzymes in fatty acid uptake, de novo lipid synthesis, and ß oxidation, and inhibited molecules for lipid export in mice liver. Conversely, PM2.5 exposure upregulated proteins involved in hepatic lipolysis and lipid export in non-pregnant mice. These results suggest that the interference of PM2.5 exposure during pregnancy on the lipid metabolism, particularly the hepatic lipid metabolism, differs from that during non-pregnancy. This study provides toxicological evidence that PM2.5 exposure during pregnancy disrupts the lipid metabolism of the liver and provides a basis for protecting vulnerable populations.


Subject(s)
Air Pollutants , Air Pollution , Maternal Exposure , Animals , Female , Mice , Pregnancy , Air Pollutants/toxicity , Glucose , Lipid Metabolism , Lipids , Liver , Maternal Exposure/adverse effects , Mice, Inbred C57BL , Particulate Matter/analysis
4.
Molecules ; 28(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894583

ABSTRACT

As a common emerging environmental pollutant, microplastics (MPs) have been detected in a variety of environmental media and human bodies. The potential toxic effects and mechanisms of MPs need to be revealed urgently. MPs can be deposited in the kidney, and exposure to high doses of MPs can cause nephrotoxicity in experimental animals. In this study, we investigated the effects of exposure to polystyrene microplastics (PS-MPs) at environmentally relevant doses (0.1 and 1 mg/L) on kidney structure, function, and transcriptome in mice. We found that mice exposed to PS-MPs in drinking water for eight weeks had no change in body weight or kidney coefficient. PS-MPs administration decreased the levels of blood urea nitrogen (BUN) in mice, while serum creatinine (CRE) and uric acid (UA) concentrations were unaffected. Through using periodic acid-Schiff (PAS) and Masson staining, we discovered that the glomerular tuft area increased in the PS-MP-treated mice, while the degree of renal fibrosis remained unchanged. Furthermore, renal cortex transcriptomic analysis identified 388 and 303 differentially expressed genes (DEGs) in the 0.1 and 1 mg/L dose groups, respectively. The DEGs were highly enriched in mitochondrial-related terms and pathways of thermogenesis and oxidative phosphorylation. Moreover, protein-protein interaction (PPI) network analysis revealed that cytochrome b-c1 complex subunit 10 (UQCR11) and cytochrome c oxidase subunit 3 (MT-CO3) were important node proteins. These findings suggest that environmental exposure to MPs can cause abnormalities in renal structure and filtration function and that long-term exposure to MPs may be a risk factor for renal disease.


Subject(s)
Plastics , Water Pollutants, Chemical , Humans , Animals , Mice , Transcriptome , Microplastics/toxicity , Kidney , Kidney Glomerulus , Polystyrenes/toxicity
5.
J Biomol Struct Dyn ; 36(8): 2032-2044, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28604271

ABSTRACT

The interactions of levofloxacin (LEV) with lysozyme (LYZ), trypsin and bovine hemoglobin (BHb) were investigated, respectively, by using multi-spectral techniques and molecular docking in vitro. Fluorescence studies showed that LEV quenched LYZ/trypsin fluorescence in a combined quenching ways and BHb fluorescence in a static quenching with binding constants of .14, .51 and .20 × 105 L mol-1 at 298 K, respectively. The thermodynamic parameters demonstrated that hydrophobic forces, hydrogen bonds, and van der Waals forces played the major role in the binding process. The binding distances between LEV and the inner tryptophan residues of LYZ, trypsin, and BHb were calculated to be 4.04, 3.38, and 4.52 nm, respectively. Furthermore, the results of circular dichroism spectra (CD), UV-vis, and three-dimensional fluorescence spectra indicated that the secondary structures of LYZ, trypsin, and BHb were partially changed by LEV with the α-helix percentage of LYZ-LEV system increased while that of BHb-LEV system was decreased, the ß-sheet percentage of trypsin-LEV system increased from 41.3 to 42.9%. UV-vis spectral results showed that the binding interactions could cause conformational and some micro-environmental changes of LYZ, trypsin, and BHb. The results of molecular docking revealed that in LYZ and trypsin systems, LEV bound to the active sites residues GLU 35 and ASP 52 of LYZ and trypsin at the active site SER 195, and in BHb system, LEV was located in the central cavity, which was consistent with the results of synchronous fluorescence experiment. Besides, LEV made the activity of LYZ decrease while the activity of trypsin increased.


Subject(s)
Hemoglobins/chemistry , Levofloxacin/chemistry , Molecular Docking Simulation , Muramidase/chemistry , Trypsin/chemistry , Animals , Binding Sites , Catalytic Domain , Cattle , Circular Dichroism , Hemoglobins/metabolism , Levofloxacin/metabolism , Molecular Structure , Muramidase/metabolism , Protein Binding , Protein Conformation , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics , Trypsin/metabolism
6.
Chemosphere ; 174: 613-627, 2017 May.
Article in English | MEDLINE | ID: mdl-28199938

ABSTRACT

The contents of chemical elements (Cd, Cr, Cu, Pb and Zn) in 11 kinds of crop/vegetables and soils around the Huodehong lead-zinc mining area in Yunnan, Southwest China were determined by using inductive coupled plasma emission spectrometry (ICP-MS). Results showed that element contents in soils decreased in the order of Zn > Pb > Cr > Cu > Cd. The high geo-accumulation indexes (Igeo) showed that cultivated soils near mine were practically polluted by Cd, Pb and Zn. The contents of Cd, Cr and Pb in crop/vegetables samples were significantly higher than the maximum permissible standard set by China. The potential health risk assessments among local residents were evaluated by the hazard index (HI), the total carcinogenic risk (TCR), the target hazard quotient (THQ) and carcinogenic risk (CR), respectively. The results showed that diet was the dominant exposure pathway. The results of HI for adult and child were 6.21 and 6.08, respectively. TCR values of Cr and Cd were more than 10-4. The THQ decreased in the following order: Cd > Pb > Cu > Zn > Cr. Among all kinds of crop/vegetables, leafy-vegetables were the major source of Cd and Pb exposure, root-vegetable were the important factors for Cu and Zn exposure, but tuber-vegetable were the factors for Cr exposure. The contents of Cd and Pb in human scalp hairs near Huodehong mine were higher than that in S20km area. Females possessed a higher risk for Cd, Cr, Cu and Pb exposure than males in study area. Significant differences between ages were found for Cd, Cu and Pb (p < 0.01). This study provided a powerful basis for the coordination of local environmental protection and economic sustainable development and assessing chemical elements risk to human health.


Subject(s)
Food Contamination/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Vegetables/chemistry , Adult , Child , China , Environmental Monitoring/methods , Female , Hair/chemistry , Humans , Male , Mining , Risk Assessment
7.
Neuropeptides ; 59: 33-38, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27431609

ABSTRACT

Substance P (SP) is an important neuropeptide regulating the functions of the pancreas and might play a vital role in the onset of diabetes. SP has been shown to express in nerve fibers of the pancreas, but whether SP exists in the intrapancreatic ganglia, which are components of a complex autonomous nervous system to co-ordinate the functions of the pancreas, is unsure. The aim of this study was to systematically investigate rat intrapancreatic ganglia and the expression of SP in intrapancreatic ganglia. After surgical denervation of posterior branches of bilateral T5-L2 dorsal root ganglia, SP expression remained >60% in the pancreas. Moreover, after high doses of capsaicin were injected to destroy sensory nerves, the remainder of SP protein levels was still >50% in the pancreas. In the intrapancreatic ganglia, for anti-SP polyclonal antibody, the immunoreactivity to SP was found in 34.0±1.2% of PGP 9.5-positive intrapancreatic neurons (47 ganglia from 13 rats); for anti-SP monoclonal antibody, the immunoreactivity to SP was found in 26.6±1.0% of PGP 9.5-positive intrapancreatic neurons (18 ganglia from 6 rats). In summary, the present molecular and immunocytochemistry studies showed that there existed intrinsic SP expression in the neurons of intrapancreatic ganglia, which constituted around half of SP origins in the pancreas suggesting that intrapancreatic ganglia might play an important role on mechanisms involving SP.


Subject(s)
Ganglia, Sympathetic/metabolism , Pancreas/metabolism , Substance P/metabolism , Animals , Denervation , Immunohistochemistry , Male , Neurons/metabolism , Pancreas/innervation , Rats , Rats, Sprague-Dawley
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2330-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30036024

ABSTRACT

Perfluorododecanoic acid (PFDoA) is the most toxic emerging environmental contaminant among the 8~12 carbon chain perfluoroalkyl acids (PFAAs). A large amount of knowledge in the field of environmental PFAAs has been accumulated so far, while we are still just at the beginning of research into the interaction between PFDoA and human serum albumin (HSA). The goal of this study was to comprehensively determinate the binding mechanism of PFDoA with HSA by using fluorescence quenching technique in combination with molecular modeling and circular dichroism (CD) spectroscopy under the simulative physiological conditions. The quenching of HSA fluorescence by PFDoA was found to be a result of the combination of dynamic quenching and the formation of PFDoA-HSA complex. The calculated binding distance (r=3.65 nm) indicated that the non-radioactive energy transfer came into being in the interaction between PFDoA (acceptor) and HSA (donor). By performing displacement measurements, the specific binding of PFDoA in the vicinity of site I of HSA was clarified. Furthermore, the binding details between PFDoA and HSA were further confirmed by molecular docking studies, which revealed that PFDoA was bound at subdomain IIA by multiple interactions, such as the interaction between O1 of PFDoA with Arg 257 and Ser 287 predominately through polar force. And the best calculated docking energy is -25.87 kJ·mol-1, this high negative value indicated that the PFDoA molecule exhibited large binding affinity towards HSA. The effects of PFDoA on the conformation of HSA were analyzed by synchronous fluorescence spectra and three-dimensional fluorescence spectra, and the results exhibited that the hydrophobicity of the microenvironment around tryptophan residue was increased and the conformation of HSA was altered after binding PFDoA. The CD spectra quantitatively calculated the protein secondary structure, which suggested a loss of helical stability after the PFDoA-HSA complex formation. The binding research presented in this paper enriches our knowledge of the interaction dynamics of perfluoroalkyl acids to the HSA and reveals the chemical essence of the interaction between biomacromolecule and ligand.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3789-95, 2016 Nov.
Article in English | MEDLINE | ID: mdl-30226718

ABSTRACT

Isonicotinic acid hydrazide (Isoniazid, INH) is one of the most commonly used first-line anti-tuberculosis drugs, which has been reported that the high concentration of INH in human body can lead to epilepsy, liver function failure, and even death. Therefore, studying the potential binding effects of INH on the structure and activity of human serum albumin (HSA) and catalase (CAT) is very essential for evaluating its toxicity and side effect. In this paper, multi-spectroscopic and molecular docking methods were used to elucidate the patterns of INH to HSA and CAT under imitated physiological conditions. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. The Stern-Volmer quenching constants (KSV) of both HSA-INH system and CAT-INH system inversely correlated with temperatures, demonstrating that INH quench the intrinsic fluorescence of HSA and CAT via static quenching. The conformational investigation of HSA and CAT through UV-visible absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) showed that INH could change the micro-environment of tryptophan residues and reduced the α-helix content of protein. These results demonstrated that the binding of INH may lead to the loosening of protein skeleton, which which may affect its physiological function. The results of molecular docking revealed that the INH was located in Sudlow's site I of HSA. And INH bound to CAT at a cavity among the wrapping domain helical domain and ß-barrel, which resulted in the inhibition of CAT activity. In addition, Levofloxacin (LVFX) is a new effective and safe second-line anti-tuberculosis drugs and can improve the curative effect on anti-TB by using with other anti-TB drugs, the result of Hill's coefficients (nH) about synergy between INH and proved that LVFX promoted the interaction of HSA with INH. Moreover, according to the CD spectra, synergy between INH and LVFX changed the conformation of HSA and the amount of α-helix decreased about 7.9%. This work will provide important insights into the binding and toxicity mechanism of INH to HSA and CAT in vivo and is expected to be helpful in evaluating the essential information for using the INH safely.


Subject(s)
Molecular Docking Simulation , Binding Sites , Catalase , Circular Dichroism , Fluorescence , Humans , Isoniazid , Protein Binding , Serum Albumin , Serum Albumin, Human , Spectrometry, Fluorescence , Thermodynamics
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(10): 3414-21, 2016 Oct.
Article in English | MEDLINE | ID: mdl-30247002

ABSTRACT

Torasemide (TOR) belongs to the pyridine sulfonylurea class of loop diuretics and is widely and effectively used in the treatment of hypertension, heart failure, chronic renal failure and liver disease. One of the adverse reactions caused by TOR was a slight gastrointestinal discomfort in the course of treatment. However, the molecular interactions of TOR with digestive proteases (trypsin and pepsin) rarely reported. The attempt of this paper was to completely investigate the binding characteristics between TOR and trypsin or pepsin at different temperatures under imitated physiological conditions by fluorescence spectroscopy, UV-vis absorption, circular dichroism (CD) and molecular modeling technique. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. It was found that the fluorescence quenching of trypsin and pepsin by TOR was a static quenching type. The Stern-Volmer quenching constants (KSV) of TOR-pepisn and TOR-trypsin were inversely correlated with temperatures. The binding of TOR changed the conformational structures and internal micro-environment of pepsin and trypsin by UV-vis absorption, synchronous fluorescence, three dimensional (3D) fluorescence and circular dichroism (CD) spectroscopy. The results showed the polarity around Tyr residues of pepsin or trypsin was changed more obviously than that around Trp residues, the TOR alters the secondary structure of trypsin and pepsin and reduces the ß-sheet content of protein, which may affect its physiological function. The molecular docking results showed that TOR inserted into the active site of pepsin to interact with the catalytic residues Asp32 and Asp215, and caused a decrease in pepsin activity. TOR bound into the primary substrate-binding pocket (S1 binding pocket) of trypsin by hydrophobic forces and affected the function of trypsin by increasing its catalytic activity. Our results offer insights for the binding and toxicity mechanism of TOR with pepsin and trypsin in vivo, which provides important information for using the TOR safely.

SELECTION OF CITATIONS
SEARCH DETAIL
...