Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Pharm Sci ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857643

ABSTRACT

Exploiting a convenient and highly bioavailable ocular drug delivery approach is currently one of the hotspots in the pharmaceutical industry. Eyelid topical application is seen to be a valuable strategy in the treatment of chronic ocular diseases. To further elucidate the feasibility of eyelid topical administration as an alternative route for ocular drug delivery, pharmacokinetic and pharmacodynamic studies of pilocarpine were conducted in rabbits. Besides, a novel physiologically based pharmacokinetic (PBPK) model describing eyelid transdermal absorption and ocular disposition was developed in rabbits. The PBPK model of rabbits was extrapolated to human by integrating the drug-specific permeability parameters and human physiological parameters to predict ocular pharmacokinetic in human. After eyelid topical application of pilocarpine, the concentration of pilocarpine in iris peaked at 2 h with the value of 18,724 ng/g and the concentration in aqueous humor peaked at 1 h with the value of 1,363 ng/mL. Significant miotic effect were observed from 0.5 h to 4.5 h after eyelid topical application of pilocarpine in rabbits, while that were observed from 0.5 h to 3.5 h after eyedrop instillation. The proposed eyelid PBPK model was capable of reasonably predicting ocular exposure of pilocarpine after application on the eyelid skin and based on the PBPK model, the human ocular concentration was predicted to be 10-fold lower than that in rabbits. And it was suggested that drugs applied on the eyelid skin could transfer into the eyeball through corneal pathway and scleral pathway. This work could provide pharmacokinetic and pharmacodynamic data for the development of eyelid drug delivery, as well as the reference for clinical applications.

2.
Ann Clin Microbiol Antimicrob ; 23(1): 33, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622723

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is a major threat to children's health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. METHODS: We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. RESULTS: mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. CONCLUSIONS: mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.


Subject(s)
Anti-Bacterial Agents , Pneumonia , Humans , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Drug Resistance, Bacterial/genetics , High-Throughput Nucleotide Sequencing , Carbapenems , Sensitivity and Specificity , Bronchoalveolar Lavage Fluid
3.
Cell Commun Signal ; 22(1): 113, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347570

ABSTRACT

Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.


Subject(s)
Cardiovascular Diseases , Ferroptosis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Cell Death , Iron
4.
Foods ; 13(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275711

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels. Firstly, the effect of DHM on blood glucose, lipid profile, and liver oxidative stress in db/db mice was explored and the results showed that DHM could reduce blood glucose and improve oxidative stress in the liver. Secondly, GO analysis based on network pharmacology and transcriptomics results showed that DHM mainly played a significant role in anti-inflammatory, antioxidant, and fatty acid metabolism in biological processes, on lipoprotein and respiratory chain on cell components, and on redox-related enzyme activity, iron ion binding, and glutathione transferase on molecular functional processes. KEGG system analysis results showed that the PI3K-Akt signaling pathway, IL17 signaling pathway, HIF signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway were typical signaling pathways disturbed by DHM in T2DM. Thirdly, molecular docking results showed that VEGFA, SRC, HIF1A, ESR1, KDR, MMP9, PPARG, and MAPK14 are key target genes, five genes of which were verified by RT-PCR in a dose-dependent manner. Finally, Western blotting results revealed that DHM effectively upregulated the expression of AKT protein and downregulated the expression of MEK protein in the liver of db/db mice. Therefore, our study found that DHM played a therapeutic effect partially by activation of the PI3K/AKT/MAPK signaling pathway. This study establishes the foundation for DHM as a novel therapeutic agent for T2DM. Additionally, it presents a fresh approach to utilizing natural plant extracts for chemoprevention and treatment of T2DM.

5.
Nat Commun ; 14(1): 6627, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37863913

ABSTRACT

Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.


Subject(s)
Signal Transduction , Toll-Like Receptors , Humans , Cryoelectron Microscopy , Toll-Like Receptors/metabolism , Immunity, Innate , Lysosomes/metabolism , Nerve Tissue Proteins/metabolism , Membrane Transport Proteins/metabolism
6.
Front Cell Infect Microbiol ; 13: 1200806, 2023.
Article in English | MEDLINE | ID: mdl-37655299

ABSTRACT

Background: Metagenomic next-generation sequencing (mNGS) is a powerful method for pathogen detection in various infections. In this study, we assessed the value of mNGS in the pathogen diagnosis and microbiome analysis of pneumonia in pediatric intensive care units (PICU) using bronchoalveolar lavage fluid (BALF) samples. Methods: A total of 104 pediatric patients with pneumonia who were admitted into PICU between June 2018 and February 2020 were retrospectively enrolled. Among them, 101 subjects who had intact clinical information were subject to parallel comparison of mNGS and conventional microbiological tests (CMTs) for pathogen detection. The performance was also evaluated and compared between BALF-mNGS and BALF-culture methods. Moreover, the diversity and structure of all 104 patients' lung BALF microbiomes were explored using the mNGS data. Results: Combining the findings of mNGS and CMTs, 94.06% (95/101) pneumonia cases showed evidence of causative pathogenic infections, including 79.21% (80/101) mixed and 14.85% (15/101) single infections. Regarding the pathogenesis of pneumonia in the PICU, the fungal detection rates were significantly higher in patients with immunodeficiency (55.56% vs. 25.30%, P =0.025) and comorbidities (40.30% vs. 11.76%, P=0.007). There were no significant differences in the α-diversity either between patients with CAP and HAP or between patients with and without immunodeficiency. Regarding the diagnostic performance, the detection rate of DNA-based BALF-mNGS was slightly higher than that of the BALF-culture although statistically insignificant (81.82% vs.77.92%, P=0.677) and was comparable to CMTs (81.82% vs. 89.61%, P=0.211). The overall sensitivity of DNA-based mNGS was 85.14% (95% confidence interval [CI]: 74.96%-92.34%). The detection rate of RNA-based BALF-mNGS was the same with CMTs (80.00% vs 80.00%, P>0.999) and higher than BALF-culture (80.00% vs 52.00%, P=0.045), with a sensitivity of 90.91% (95%CI: 70.84%-98.88%). Conclusions: mNGS is valuable in the etiological diagnosis of pneumonia, especially in fungal infections, and can reveal pulmonary microecological characteristics. For pneumonia patients in PICU, the mNGS should be implemented early and complementary to CMTs.


Subject(s)
Microbiota , Pneumonia , Humans , Child , Bronchoalveolar Lavage Fluid , Retrospective Studies , Pneumonia/diagnosis , Microbiota/genetics , High-Throughput Nucleotide Sequencing , Intensive Care Units, Pediatric , Lung
7.
Front Cell Infect Microbiol ; 13: 1179090, 2023.
Article in English | MEDLINE | ID: mdl-37674579

ABSTRACT

Major Histocompatibility Complex Class II (MHC II) deficiency is a rare primary immunodeficiency disorder (PID) with autosomal recessive inheritance pattern. The outcome is almost fatal owing to delayed diagnosis and lacking of effective therapy. Therefore, prompt diagnosis, timely and effective treatment are critical. Here, we report a 117-day-old boy with diarrhea, cough, cyanosis and tachypnea who was failed to be cured by empiric antimicrobial therapy initially and progressed to severe pneumonia and respiratory failure. The patient was admitted to the pediatric intensive care unit (PICU) immediately and underwent a series of tests. Blood examination revealed elevated levels of inflammatory markers and cytomegalovirus DNA. Imaging findings showed signs of severe infection of lungs. Finally, the diagnosis was obtained mainly through next-generation sequencing (NGS). We found out what pathogenic microorganism he was infected via repeated conventional detection methods and metagenomic next-generation sequencing (mNGS) of sputum and bronchoalveolar lavage fluid (BALF). And his whole exome sequencing (WES) examination suggested that CIITA gene was heterozygous mutation, a kind of MHC II deficiency diseases. After aggressive respiratory support and repeated adjustment of antimicrobial regimens, the patient was weaned from ventilator on the 56th day of admission and transferred to the immunology ward on the 60th day. The patient was successful discharged after hospitalizing for 91 days, taking antimicrobials orally to prevent infections post-discharge and waiting for stem cell transplantation. This case highlights the potential importance of NGS in providing better diagnostic testing for unexplained infection and illness. Furthermore, pathogens would be identified more accurately if conventional detection techniques were combined with mNGS.


Subject(s)
Coinfection , Primary Immunodeficiency Diseases , Male , Child , Humans , Aftercare , Patient Discharge , High-Throughput Nucleotide Sequencing , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/genetics
8.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569566

ABSTRACT

Carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) are established prognostic biomarkers for patients with gastric cancer. However, their potential as predictive markers for neoadjuvant chemotherapy (NACT) efficacy has not been fully elucidated. METHODS: We conducted a retrospective analysis to determine values of CEA and CA19-9 prior to NACT (pre-NACT) and after NACT (post-NACT) in 399 patients with locally advanced gastric cancer (LAGC) who received intended NACT and surgery. RESULTS: Among the 399 patients who underwent NACT plus surgery, 132 patients (33.1%) had elevated pre-NACT CEA/CA19-9 values. Furthermore, either pre-NACT or post-NACT CEA /CA19-9 levels were significantly associated with prognosis (p = 0.0023) compared to patients with non-elevated levels. Moreover, among the patients, a significant proportion (73/132, 55.3%) achieved normalized CEA/CA19-9 following NACT, which is a strong marker of a favorable treatment response and survival benefits. In addition, the patients with normalized CEA/CA19-9 also had a prolonged survival compared to those who underwent surgery first (p = 0.0140), which may be attributed to the clearance of micro-metastatic foci. Additionally, the magnitude of CEA/CA19-9 changes did not exhibit a statistically significant prognostic value. CONCLUSIONS: Normalization of CEA/CA19-9 is a strong biomarker for the effectiveness of treatment, and can thus be exploited to prolong the long-term survival of patients with LAGC.


Subject(s)
Carcinoembryonic Antigen , Stomach Neoplasms , Humans , CA-19-9 Antigen , Stomach Neoplasms/pathology , Neoadjuvant Therapy , Retrospective Studies , Biomarkers, Tumor , Carbohydrates
9.
Antiviral Res ; 216: 105642, 2023 08.
Article in English | MEDLINE | ID: mdl-37253400

ABSTRACT

Covalently closed circular (ccc) DNA is the template for hepatitis B virus (HBV) replication. The lack of small animal models for characterizing chronic HBV infection has hampered research progress in HBV pathogenesis and drug development. Here, we generated a spatiotemporally controlled recombinant cccDNA (rcccDNA) mouse model by combining Cre/loxP-mediated DNA recombination with the liver-specific "Tet-on/Cre" system. The mouse model harbors three transgenes: a single copy of the HBV genome (integrated at the Rosa26 locus, RHBV), H11-albumin-rtTA (spatiotemporal conditional module), and (tetO)7-Cre (tetracycline response element), and is named as RHTC mouse. By supplying the RHTC mice with doxycycline (DOX)-containing drinking water for two days, the animals generate rcccDNA in hepatocytes, and the rcccDNA supports active HBV gene expression and can maintain HBV viremia persistence for over 60 weeks. Persistent HBV gene expression induces intrahepatic inflammation, fibrosis, and dysplastic pathology, which closely mirrors the disease progression in clinical patients. Bepirovirsen, an antisense oligonucleotide (ASO) targeting all HBV RNA species, showed dose-dependent antiviral effects in the RHTC mouse model. The spatiotemporally controlled rcccDNA mouse is convenient and reliable, providing versatile small animal model for studying cccDNA-centric HBV biology as well as evaluating antiviral therapeutics.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Mice , Animals , Hepatitis B virus/physiology , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B, Chronic/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Antiviral Agents/therapeutic use , Disease Models, Animal , Virus Replication , Hepatitis B/drug therapy
10.
Front Oncol ; 13: 1154073, 2023.
Article in English | MEDLINE | ID: mdl-37143950

ABSTRACT

Introduction: Due to the difficulty of early diagnosis, nearly 70% of ovarian cancer patients are first diagnosed at an advanced stage. Thus, improving current treatment strategies is of great significance for ovarian cancer patients. Fast-developing poly (ADP-ribose) polymerases inhibitors (PARPis) have been beneficial in the treatment of ovarian cancer at different stages of the disease, but PARPis have serious side effects and can result in drug resistance. Using PARPis in combination with other drug therapies could improve the efficacy of PRAPis.In this study, we identified Disulfiram as a potential therapeutic candidate through drug screening and tested its use in combination with PARPis. Methods: Cytotoxicity tests and colony formation experiments showed that the combination of Disulfiram and PARPis decreased the viability of ovarian cancer cells. Results: The combination of PARPis with Disulfiram also significantly increased the expression of DNA damage index gH2AX and induced more PARP cleavage. In addition, Disulfiram inhibited the expression of genes associated with the DNA damage repair pathway, indicating that Disulfiram functions through the DNA repair pathway. Discussion: Based on these findings, we propose that Disulfiram reinforces PARPis activity in ovarian cancer cells by improving drug sensitivity. The combined use of Disulfiram and PARPis provides a novel treatment strategy for patients with ovarian cancer.

11.
Front Cell Infect Microbiol ; 13: 1082925, 2023.
Article in English | MEDLINE | ID: mdl-37009495

ABSTRACT

Background: Severe pneumonia due to lower respiratory tract infections (LRTIs) is a significant cause of morbidity and mortality in children. Noninfectious respiratory syndromes resembling LRTIs can complicate the diagnosis and may also make targeted therapy difficult because of the difficulty of identifying LRTI pathogens. In the present study, a highly sensitive metagenomic next-generation sequencing (mNGS) approach was used to characterize the microbiome of bronchoalveolar lavage fluid (BALF) in children with severe lower pneumonia and identify pathogenic microorganisms that may cause severe pneumonia. The purpose of this study was to use mNGS to explore the potential microbiomes of children with severe pneumonia in a PICU. Methods: We enrolled patients meeting diagnostic criteria for severe pneumonia admitted at PICU of the Children's Hospital of Fudan University, China, from February 2018 to February 2020. In total, 126 BALF samples were collected, and mNGS was performed at the DNA and/or RNA level. The pathogenic microorganisms in BALF were identified and correlated with serological inflammatory indicators, lymphocyte subtypes, and clinical symptoms. Results: mNGS of BALF identified potentially pathogenic bacteria in children with severe pneumonia in the PICU. An increased BALF bacterial diversity index was positively correlated with serum inflammatory indicators and lymphocyte subtypes. Children with severe pneumonia in the PICU had the potential for coinfection with viruses including Epstein-Barr virus, Cytomegalovirus, and Human betaherpesvirus 6B, the abundance of which was positively correlated with immunodeficiency and pneumonia severity, suggesting that the virus may be reactivated in children in the PICU. There was also the potential for coinfection with fungal pathogens including Pneumocystis jirovecii and Aspergillus fumigatus in children with severe pneumonia in the PICU, and an increase in potentially pathogenic eukaryotic diversity in BALF was positively associated with the occurrence of death and sepsis. Conclusions: mNGS can be used for clinical microbiological testing of BALF samples from children in the PICU. Bacterial combined with viral or fungal infections may be present in the BALF of patients with severe pneumonia in the PICU. Viral or fungal infections are associated with greater disease severity and death.


Subject(s)
Coinfection , Epstein-Barr Virus Infections , Pneumonia , Respiratory Tract Infections , Humans , Child , Bronchoalveolar Lavage Fluid , Herpesvirus 4, Human , Pneumonia/diagnosis , High-Throughput Nucleotide Sequencing , Intensive Care Units, Pediatric , Metagenomics , Sensitivity and Specificity
12.
J Pharm Pharmacol ; 75(4): 523-532, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-36861187

ABSTRACT

OBJECTIVES: Enrichment for therapy-resistant cancer stem cells hampers the treatment of triple-negative breast cancer. Targeting these cells via suppression of Notch signalling can be a potential therapeutic strategy. This study aimed to uncover the mode of action of a new indolocarbazole alkaloid loonamycin A against this incurable disease. METHODS: The anticancer effects were examined in triple-negative breast cancer cells using in vitro methods, including cell viability and proliferation assays, wound-healing assay, flow cytometry and mammosphere formation assay. RNA-seq technology was used to analyse the gene expression profiles in loonamycin A-treated cells. Real-time RT-PCR and western blot were to evaluate the inhibition of Notch signalling. KEY FINDINGS: Loonamycin A has stronger cytotoxicity than its structural analog rebeccamycin. Besides inhibiting cell proliferation and migration, loonamycin A reduced CD44high/CD24low/- sub-population, mammosphere formation, as well as the expression of stemness-associated genes. Co-administration of loonamycin A enhanced antitumour effects of paclitaxel by inducing apoptosis. RNA sequencing results showed that loonamycin A treatment caused the inhibition of Notch signalling, accompanied by the decreased expression of Notch1 and its targeted genes. CONCLUSIONS: These results reveal a novel bioactivity of indolocarbazole-type alkaloids and provide a promising Notch-inhibiting small molecular candidate for triple-negative breast cancer therapy.


Subject(s)
Alkaloids , Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Alkaloids/pharmacology , Alkaloids/therapeutic use
13.
Front Pharmacol ; 13: 1065867, 2022.
Article in English | MEDLINE | ID: mdl-36467031

ABSTRACT

Acute kidney injury (AKI), one of the most prevalent clinical diseases with a high incidence rate worldwide, is characterized by a rapid deterioration of renal function and further triggers the accumulation of metabolic waste and toxins, leading to complications and dysfunction of other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic medications, and ischemia-reperfusion injury, contribute to the onset and progression of AKI. However, the detailed mechanism remains unclear. Ferroptosis, a recently identified mechanism of nonapoptotic cell death, is iron-dependent and caused by lipid peroxide accumulation in cells. A variety of studies have demonstrated that ferroptosis plays a significant role in AKI development, in contrast to other forms of cell death, such as apoptosis, necroptosis, and pyroptosis. In this review, we systemically summarized the definition, primary biochemical mechanisms, key regulators and associated pharmacological research progress of ferroptosis in AKI. We further discussed its therapeutic potential for the prevention of AKI, in the hope of providing a useful reference for further basic and clinical studies.

14.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431786

ABSTRACT

Multidrug-resistant bacterial infections mediated by metallo-ß-lactamases (MßLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of ß-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 µg/mL. This work offers a promising scaffold for the development of MßLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Vancomycin , Vancomycin/pharmacology , Staphylococcus aureus , beta-Lactamases , Meropenem/pharmacology , Microbial Sensitivity Tests , Escherichia coli , Bacteria
15.
Influenza Other Respir Viruses ; 16(6): 1059-1065, 2022 11.
Article in English | MEDLINE | ID: mdl-36043446

ABSTRACT

OBJECTIVES: This study aimed to understand the epidemiological and clinical characteristics of pediatric SARS-CoV-2 infection during the early stage of Omicron variant outbreak in Shanghai. METHODS: This study included local COVID-19 cases <18 years in Shanghai referred to the exclusively designated hospital from March 7 to March 31, 2022. Clinical data, epidemiological exposure, and COVID-19 vaccination status were collected. Relative risks (RRs) were calculated to assess the effect of vaccination on symptomatic infection and febrile disease. RESULTS: A total of 376 pediatric cases of COVID-19 (median age: 6.0 ± 4.2 years) were referred to the designated hospital, including 257 (68.4%) symptomatic cases and 119 (31.6%) asymptomatic cases. Of the 307 (81.6%) children ≥3 years eligible for COVID-19 vaccination, 110 (35.8%) received two doses of vaccines. The median interval between the completion of two-dose vaccination and infection was 3.5 (interquartile range [IQR]: 3, 4.5) months. Compared with no vaccination, two-dose COVID-19 vaccination reduced the risks of symptomatic infection and febrile disease by 35% (RR 0.65, 95% confidence interval [CI]: 0.53-0.79) and 33% (RR 0.64, 95% CI: 0.51-0.81) among confirmed cases. Eighty-four percent of symptomatic cases had fever (mean duration: 1.7 ± 1.0.8 days), 40.5% had cough, and 16.4% had transient leukopenia. Three hundred and seven (81.6%) had an epidemiological exposure in household (69.1%), school (21.8%), and residential area (8.8%). CONCLUSION: The surge of pediatric COVID-19 cases and multiple transmission model reflect wide dissemination of Omicron variant in the community. Asymptomatic infection is common among Omicron-infected children. COVID-19 vaccination can offer some protection against symptomatic infection and febrile disease.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Child, Preschool , China/epidemiology , Disease Outbreaks/prevention & control , Humans , Infant , SARS-CoV-2
16.
Oxid Med Cell Longev ; 2022: 6664990, 2022.
Article in English | MEDLINE | ID: mdl-36017237

ABSTRACT

Vascular dementia (VaD), the second cause of dementia, is caused by chronic cerebral hypoperfusion, producing progressive damage to cerebral cortex, hippocampus, and white matter. Ligustilide (LIG), one of the main active ingredients of Angelica sinensis, exerts the neuroprotective effect on neurodegenerative diseases. However, the mechanism remains unclear. An in vivo model of bilateral common carotid artery occlusion and in vitro model of oxygen glucose deprivation (OGD) were employed in this study. LIG (20 or 40 mg/kg/day) was intragastrically administered to the VaD rats for four weeks. The results of the Morris water maze test demonstrated that LIG effectively ameliorated learning and memory deficiency in VaD rats. LIG obviously relieved neuronal oxidative stress damage by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) and decreasing the level of malondialdehyde (MDA) in VaD rats. Nissl staining showed that LIG increased the number of the Nissl body in VaD rats. After LIG administration, the apoptotic-related protein, Bax, was decreased and Bcl-2 was increased in the hippocampus of VaD rats. Moreover, the expressions of sirtuin 1 (SIRT1) and protein disulfide isomerase (PDI) were decreased, binding immunoglobulin protein (BIP) and phospho-inositol-requiring enzyme-1α (P-IRE1α), X-box binding protein 1 (XBP1s), and C/EBP-homologous protein (CHOP) were increased in VaD rats. After LIG treatment, these changes were reversed. The immunofluorescence results further showed that LIG upregulated the expression of SIRT1 and downregulated the expression of P-IRE1α in VaD rats. In addition, in vitro experiment showed that EX-527 (SIRT1 inhibitor) partly abolished the inhibitory effect of LIG on the IRE1α/XBP1s/CHOP pathway. In conclusion, these studies indicated that LIG could improve cognitive impairment by regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in VaD rats.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , 4-Butyrolactone/analogs & derivatives , Animals , Cognitive Dysfunction/drug therapy , Dementia, Vascular/drug therapy , Endoribonucleases , Multienzyme Complexes , Protein Serine-Threonine Kinases , Rats , Sirtuin 1 , Transcription Factor CHOP , X-Box Binding Protein 1
17.
RSC Adv ; 12(28): 17937-17943, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35800314

ABSTRACT

Novel carbon nanostructures, carbon nanobuds and nanoballs in situ grown on graphene, have been synthesized by the electrochemical method in this study. Pristine graphene (GR) sheets were potentiostatic treated with sulfuric acid and were oxidized at 1.4-2.0 V constant potentials to obtain numerous nanobuds and peeled nanoballs. Scanning electron microscopy was used to determine the morphology of electrochemically treated GR nanosheets. Fourier transform infrared, X-ray diffraction analysis, and Raman spectroscopy were used to characterize the structure of samples. The above results indicate that amounts of nanobuds were in situ grown on the surface of GR sheets at a constant potential of 1.4 V was added to the GR electrode. With the constant potential increasing, the nanobuds grew into the nanoballs, exfoliating from the surface of graphene sheets, whereas the peroxidation of graphene sheets occurred at a higher potential of 2.0 V, leading to the formation of a large amount of graphene oxide fragments. Therefore, the optimal processing parameter of the formation of carbon nanoballs was under the constant potential of 1.8 V for 500 s.

18.
Metab Brain Dis ; 37(5): 1401-1414, 2022 06.
Article in English | MEDLINE | ID: mdl-35420377

ABSTRACT

Vascular dementia (VaD) is the second cause of dementia after Alzheimer's disease. Ligustilide (LIG) is one of the main active ingredients of traditional Chinese medicines, such as Angelica. Studies have reported that LIG could protect against VaD. However, the mechanism is still confused. In this study, we employed a bilateral common carotid artery occlusion rat model to study. LIG (20 or 40 mg/kg/day) and Nimodipine (20 mg/kg) were orally administered to the VaD rats for four weeks. Morris water maze test showed that LIG effectively ameliorated learning and memory impairment in VaD rats. LIG obviously reduced neuronal oxidative stress damage and the level of homocysteine in the brain of VaD rats. Western blot results showed that pro-apoptotic protein Bax and cleaved caspase 3 increased and anti-apoptotic protein Bcl-2 decreased in the hippocampi of VaD rats. But after LIG treatment, these changes were reversed. Moreover, Nissl staining result showed that LIG could reduce neuronal degeneration in VaD rats. Furthermore, LIG enhanced the expressions of P-AMPK and Sirtuin1(SIRT1) in VaD rats. In conclusion, these studies indicated that LIG could ameliorate cognitive impairment in VaD rats, which might be related to AMPK/SIRT1 pathway activation.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , 4-Butyrolactone/analogs & derivatives , AMP-Activated Protein Kinases , Animals , Cognitive Dysfunction/drug therapy , Dementia, Vascular/drug therapy , Disease Models, Animal , Maze Learning , Rats , Sirtuin 1
19.
BMC Infect Dis ; 22(1): 210, 2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35240992

ABSTRACT

BACKGROUND: Community-acquired Methicillin-resistant Staphylococcus aureus (CA-MRSA) is an emerging pathogen that leads to severe outcomes, especially in pediatric patients with multiple sites infection. CASE PRESENTATION: We report a case of multiple sites and life-threatening infection caused by CA-MRSA in a 6-year-old girl who manifested sepsis, myelitis, purulent arthritis, purulent meningitis, hydropericardium, pneumonia, and empyema. The girl exhibited good response to the combination therapy of linezolid and rifampicin after treatment failure of vancomycin with maximum dose due to its serum concentration unable to reach therapeutic goal. We performed pleural effusion and hydropericardium effusion drainage and treated left lower limb infection using interdisciplinary approaches. CONCLUSION: This case highlights the need to be aware of CA-MRSA infection, which requires accurate diagnosis, identification of infected sites, appropriate antibiotic treatment, and surgical debridement.


Subject(s)
Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , Child , Community-Acquired Infections/drug therapy , Female , Humans , Linezolid/therapeutic use , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Vancomycin/therapeutic use
20.
J Thorac Dis ; 14(1): 64-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35242369

ABSTRACT

BACKGROUND: Radiofrequency ablation (RFA) is a minimally invasive procedure to treat lung cancer. Timely evaluation on residual lung tumor after RFA is crucial to the prognosis, hence, our objective is to assess CT perfusion (CTP) on detection of residual lung tumor early after RFA. METHODS: CTP imaging was performed in 24 lung VX2 tumor models 1 day before and within 1 hour after RFA. CTP maps with dual-input (n=24) and single-input [n=13, with predominant ground glass opacity (GGO) after RFA] models were generated using the maximal slope method. Regions of interest were independently placed on the maximal cross-sectional tumor before and after RFA and on GGO after RFA by two thoracic radiologists. The bronchial flow (BF), pulmonary flow (PF) and perfusion index (PI) were compared between pre-RFA and post-RFA images. The parameters (BF, PF and PI of tumor; PF of GGO) of the complete and incomplete RFA groups were compared based on nicotinamide adenine dinucleotide hydrogen (NADH) and TdT-mediated dUTP nick-end labeling (TUNEL) staining and were correlated with the microvascular density (MVD). RESULTS: The BF and PF decreased after RFA (all P values <0.03). The decrease in BF and PF (ΔBF and ΔPF) in the complete RFA group was higher (P=0.01; 0.02). The areas under the curve (AUC) of ΔBF and ΔPF at 14.85 and 17.25 mL/min/100 mL in determination of tumor with complete ablation were 0.80 and 0.78, respectively. ΔBF was positively correlated with MVD (P=0.046, r=0.468). PF of GGO with incomplete RFA was higher (P=0.001). The AUC of PF ≤29.4 mL/min/100 mL in determination of tumor with complete ablation was 0.99. CONCLUSIONS: CTP could detect residual lung tumor early after RFA in a rabbit model, which might provide a clinical solution to early treatment assessment after RFA.

SELECTION OF CITATIONS
SEARCH DETAIL
...