Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 262: 114271, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32135433

ABSTRACT

Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oxidative Stress , Animals , Carbanilides , Mice , Mitochondria , Oocytes
2.
Chemosphere ; 249: 126182, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32078850

ABSTRACT

An adverse tendency induced by the environmental estrogens in female reproductive health is one serious problem worldwide. Diethylstilbestrol (DES), as a synthetic estrogen, is still used as an animal growth stimulant in terrestrial livestock and aquaculture illegally. It has been reported to negatively affect ovarian function and oogenesis. Nevertheless, the mechanism and toxicity of DES on oocyte meiotic maturation are largely unknown. Herein, we found that DES (40 µM) intervened in mouse oocyte maturation and first polar body extrusion (PBE) was decreased in vitro. Cell cycle analysis showed meiotic process was disturbed with oocytes arrested at metaphase I (MI) stage after DES exposure. Further study showed that DES exposure disrupted the spindle assembly and chromosome alignment, which then continuously provoke the spindle assemble checkpoint (SAC). We also observed that the acetylation levels of α-tubulin were dramatically increased in DES-treated oocytes. In addition, the dynamics of actin were also affected. Moreover, the distribution patterns of estrogen receptor α (ERα) were altered in DES-treated oocyte, as indicated by the significant signals accumulation in the spindle area. However, ERα inhibitor failed to rescue the defects of oocyte maturation caused by DES. Of note, the same phenomenon was observed in estrogen-treated oocytes. Collectively, we showed that DES exposure lead to the oocyte meiotic failure via impairing the spindle assembly and chromosome alignment. Our research is helpful to understand how environmental estrogen affects female germ cells and contribute to design the potential therapies to preserve fertility especially for occupational exposure.


Subject(s)
Diethylstilbestrol/toxicity , Estrogens, Non-Steroidal/toxicity , Animals , Cell Growth Processes , Chromosomes , Female , M Phase Cell Cycle Checkpoints , Meiosis/drug effects , Metaphase , Mice , Oocytes/metabolism , Oogenesis/drug effects , Spindle Apparatus , Toxicity Tests , Tubulin/metabolism
3.
Toxicol Sci ; 171(2): 359-368, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31368505

ABSTRACT

Developments in chemotherapeutics have enhanced the survival rate of cancer patients, however, adverse effects of chemotherapeutics on ovarian functions causes the fertility loss in young female cancer patients. Doxorubicin (DOX), as an anthracycline antitumor antibiotic, is extensively used to cure various malignancies. Recent studies have suggested that DOX can cause ovarian damage and affect the oocyte maturation, nevertheless the mechanism by which DOX on oocytes meiosis is poorly understood. In this study, we explored the mechanism for DOX-induced oocytes meiotic failure in vitro at human relevant exposure levels and time periods. Results described that DOX (100 nM) can interrupt the mouse oocytes meiotic maturation directly with reduced first polar body extrusion. Cell cycle analysis showed that most oocytes were arrested at metaphase I (MI) stage. However, DOX treatment had no effect on spindle structure but chromosomal misalignment. We observed that kinetochore-microtubule structure was affected and the spindle assemble checkpoint was provoked after DOX treatment. Moreover, severe DNA damage was found in DOX-treated oocytes indicated by the positive γ-H2A.X foci signal, which then may trigger oocytes early apoptosis. Besides, metaphase II oocytes with disorganized spindle morphologies and misaligned chromosomes were observed after DOX treatment. In conclusion, DOX have the potential to disrupt oocyte meiotic maturation through DNA damage induced meiotic arrest mediated by spindle assemble checkpoint activation. These findings can contribute to design the new therapies to alleviate DNA damage to preserve fertility for young female cancer patients with chemotherapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...