Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 811
Filter
2.
Support Care Cancer ; 32(7): 415, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847977

ABSTRACT

PURPOSE: Anemia is relatively common in cancer patients, and is associated with poor survival in patients with various malignancies. However, how anemia would affect prognosis and response to neoadjuvant chemotherapy (NAC) in osteosarcoma (OS) is still without substantial evidence. METHODS: We retrospectively analysed 242 patients with stage II OS around the knee joint in our institute. Changed hemoglobin (Hb) levels (before and after NAC) were recorded to assess the prognostic value in DFS (disease-free survival) and tumor response to NAC. Univariate and multivariate analyses were conducted to identify prognostic factors related with outcome in OS patients. RESULTS: The mean Hb level significantly decreased after NAC (134.5 ± 15.3 g/L vs. 117.4 ± 16.3 g/L). The percentage of mild (21%), moderate (4.2%) and severe (0%) anemia patients markedly increased after NAC: 41%, 24% and 4.1% respectively. There was higher percentage of ≥ 5% Hb decline in patients with tumor necrosis rate < 90% (141 out of 161), compared with those with tumor necrosis rate ≥ 90% (59 out of 81). Further univariate and survival analysis demonstrated that Hb decline had a significant role in prediction survival in OS patients. Patients with ≥ 5% Hb decline after NAC had an inferior DFS compared with those with < 5% Hb decline. CONCLUSION: In osteosarcoma, patients with greater Hb decrease during neoadjuvant treatment were shown to have worse DFS and a poorer response to NAC than those without. Attempts to correct anemia and their effects on outcomes for osteosarcoma patients should be explored in future studies.


Subject(s)
Anemia , Bone Neoplasms , Hemoglobins , Knee Joint , Neoadjuvant Therapy , Osteosarcoma , Humans , Osteosarcoma/drug therapy , Osteosarcoma/mortality , Retrospective Studies , Male , Female , Neoadjuvant Therapy/methods , Hemoglobins/analysis , Adult , Prognosis , Anemia/etiology , Adolescent , Bone Neoplasms/drug therapy , Bone Neoplasms/mortality , Young Adult , Child , Knee Joint/pathology , Disease-Free Survival , Middle Aged , Multivariate Analysis , Chemotherapy, Adjuvant/methods , Severity of Illness Index
3.
J Headache Pain ; 25(1): 74, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724948

ABSTRACT

BACKGROUND: Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS: A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS: Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION: EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.


Subject(s)
Central Nervous System Sensitization , Disease Models, Animal , Hyperalgesia , Migraine Disorders , Nitroglycerin , Animals , Nitroglycerin/toxicity , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Hyperalgesia/chemically induced , Female , Central Nervous System Sensitization/drug effects , Central Nervous System Sensitization/physiology , Mice , Calcitonin Gene-Related Peptide/metabolism , Environment , Mice, Inbred C57BL
4.
Angew Chem Int Ed Engl ; : e202401724, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691401

ABSTRACT

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H···N and N-H···N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands´ vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.

5.
Acc Chem Res ; 57(10): 1550-1563, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723018

ABSTRACT

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

6.
Angew Chem Int Ed Engl ; : e202407856, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795326

ABSTRACT

Aqueous Sn-air batteries are attracting a great deal of interest in recent years due to the ultra-high safety, low cost, dendrite-free and highly reversible Sn anode. However, the slurry oxygen reduction/evolution reaction (ORR/OER) kinetics on the air cathodes seriously affect the Sn-air battery performances. Although various advanced catalysts have been developed, the charge overpotentials (~1000 mV) of these Sn-air batteries are still not satisfactory. Herein, iron oxide (Fe2O3) modified titanium dioxide (TiO2) nanorods with heterogeneous structure are firstly synthesized on Ti mesh (Fe2O3@TiO2/Ti), and the obtained Fe2O3@TiO2/Ti is further applied as catalytic electrodes for Sn-air batteries. The core-shell heterogeneous structure of Fe2O3@TiO2/Ti can effectively facilitate the conversion of electrochemical intermediates and separation of photo-excited electrons and holes to active oxygen-related reaction processes. DFT and experimental results also confirm that Fe2O3@TiO2/Ti can not only act as the electrocatalysts to improve ORR/OER properties, but also exhibit the superior photo-catalytic activity to promote charge kinetics. Hence, the Fe2O3@TiO2/Ti-based Sn-air batteries show ultra-low overpotential of ~40 mV, excellent rate capability and good cycling stability under light irradiation. This work will shed light on rational photo-assisted catalytic cathode design for new-type metal-air batteries.

7.
Environ Sci Pollut Res Int ; 31(24): 35332-35352, 2024 May.
Article in English | MEDLINE | ID: mdl-38727971

ABSTRACT

Petroleum hydrocarbons are a stubborn pollutant that is difficult to degrade globally, and plant-microbial degradation is the main way to solve this type of pollutant. In this study, the physiological and ecological responses of alfalfa to petroleum hydrocarbons in different concentrations of petroleum hydrocarbon-contaminated soil with KB1 (Rhodococcus erythropolis) were analyzed and determined by laboratory potting techniques. The growth of alfalfa (CK) and alfalfa with KB1 (JZ) in different concentrations of petroleum hydrocarbons contaminated soil was compared and analyzed. The results of the CK group showed that petroleum hydrocarbons could significantly affect the activity of alfalfa antioxidant enzyme system, inhibit the development of alfalfa roots and the normal growth of plants, especially in the high-concentration group. KB1 strain had the ability to produce IAA, form biofilm, fix nitrogen, produce betaine and ACC deaminase, and the addition of KB1 could improve the growth traits of alfalfa in the soil contaminated with different concentrations of petroleum hydrocarbons, the content of soluble sugars in roots, and the stress resistance and antioxidant enzyme activities of alfalfa. In addition, the degradation kinetics of the strain showed that the degradation rate of petroleum could reach 75.2% after soaking with KB1. Furthermore, KB1 can efficiently degrade petroleum hydrocarbons in advance and significantly alleviate the damage of high concentration of petroleum hydrocarbons to plant roots. The results showed that KB1 strains and alfalfa plants could effectively enhance the degradation of petroleum hydrocarbons, which provided new ideas for improving bioremediation strategies.


Subject(s)
Biodegradation, Environmental , Hydrocarbons , Medicago sativa , Petroleum , Rhodococcus , Soil Pollutants , Petroleum/metabolism , Soil Pollutants/metabolism , Rhodococcus/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Plant Roots/metabolism
8.
J Am Chem Soc ; 146(22): 15496-15505, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38785353

ABSTRACT

The practical application of aqueous zinc-ion batteries (AZIBs) is greatly challenged by rampant dendrites and pestilent side reactions resulting from an unstable Zn-electrolyte interphase. Herein, we report the construction of a reliable superstructured solid electrolyte interphase for stable Zn anodes by using mesoporous polydopamine (2D-mPDA) platelets as building blocks. The interphase shows a biomimetic nacre's "brick-and-mortar" structure and artificial transmembrane channels of hexagonally ordered mesopores in the plane, overcoming the mechanical robustness and ionic conductivity trade-off. Experimental results and simulations reveal that the -OH and -NH groups on the surface of artificial ion channels can promote rapid desolvation kinetics and serve as an ion sieve to homogenize the Zn2+ flux, thus inhibiting side reactions and ensuring uniform Zn deposition without dendrites. The 2D-mPDA@Zn electrode achieves an ultralow nucleation potential of 35 mV and maintains a Coulombic efficiency of 99.8% over 1500 cycles at 5 mA cm-2. Moreover, the symmetric battery exhibits a prolonged lifespan of over 580 h at a high current density of 20 mA cm-2. This biomimetic superstructured interphase also demonstrates the high feasibility in Zn//VO2 full cells and paves a new route for rechargeable aqueous metal-ion batteries.

9.
Int J Inj Contr Saf Promot ; : 1-13, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708845

ABSTRACT

Taxis play a crucial role in urban public transportation, but the traffic safety situation of taxi drivers is far from optimistic, especially considering the introduction of ride-hailing services into the taxi industry. This study conducted a comparative analysis of risk factors in crashes between traditional taxi drivers and ride-hailing taxi drivers in China, including their demographic characteristics, working conditions, and risky driving behaviors. The data was collected from 2,039 traditional taxi drivers and 2,182 ride-hailing taxi drivers via self-reported questionnaires. Four XGBoost models were established, taking into account different types of taxi drivers and crash types. All models showed acceptable performance, and SHAP explainer was used to analyze the model results. The results showed that for both taxi drivers, risk factors related to risky driving behaviors are more important in predicting property damage (PD) crashes, while risk factors related to working conditions are more important in predicting person injury (PI) crashes. However, the relative importance of each risk factor varied depending on the type of crashes and the type of taxi drivers involved. Furthermore, the results also validated certain interactions among the risk factors, indicating that the combination of certain factors generated a greater impact on crashes compared to individual factors alone. These findings can provide valuable insights for formulating appropriate measures to enhance road safety for taxi driver.

10.
Materials (Basel) ; 17(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793372

ABSTRACT

In order to increase the utilization rate of stainless steel slag, reduce storage needs, and mitigate environmental impacts, this study replaces a portion of limestone with varying amounts of stainless steel slag in the calcination of Portland cement clinker. The study primarily examines the influence of stainless steel slag on the phase composition, microstructure, compressive strength, and free calcium oxide (ƒ-CaO) content of Portland cement clinker. The results show the following: (1) Using stainless steel slag to calcine Portland cement clinker can lower the calcination temperature, reducing industrial production costs and energy consumption. (2) With an increase in the amount of stainless steel slag, the dicalcium silicate (C2S) and tricalcium silicate (C3S) phases in Portland cement clinker initially increase and then decrease; the C3S crystals gradually transform into continuous hexagonal plate-shaped distributions, while the tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) crystal structures become denser. When the stainless steel slag content is 15%, the dicalcium silicate and tricalcium silicate phases are at their peak; the C3S crystals are continuously distributed with a relatively dense structure, and C3A and C4AF crystals melt and sinter together, becoming distributed around C3S. (3) As stainless steel slag content increases, the compressive strength of Portland cement clinker at 3 days, 7 days, and 28 days increases and then decreases, while ƒ-CaO content decreases and then increases. When the stainless steel slag content is 15%, the compressive strength at 28 days is at its highest, 64.4 MPa, with the lowest ƒ-CaO content, 0.78%. The test results provide a basis for the utilization of stainless steel slag in the calcination of Portland cement clinker.

11.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794213

ABSTRACT

Atherosclerosis is the main pathological basis of cardiovascular diseases (CVDs). Fufang Danshen Tablet (FDT) is a traditional Chinese medicine that has been clinically used to treat CVDs for more than 40 years. Nevertheless, owing to the complexity of the ingredients, the pharmacological mechanism of FDT in the treatment of CVDs has not been fully elucidated. In this study, an integrated strategy of UFLC-Q-TOF-MS/MS, network pharmacology, molecular biology, and transcriptomics was used to elucidate the mechanisms of action of FDT in the treatment of atherosclerosis. In total, 22 absorbed constituents were identified in rat serum after oral administration of FDT. In silico, network pharmacology studies have shown that FDT regulates four key biological functional modules for the treatment of atherosclerosis: oxidative stress, cell apoptosis, energy metabolism, and immune/inflammation. In animal experiments, FDT exerted protective effects against atherosclerosis by reducing the plaque area and lipid levels in ApoE-/- mice. Furthermore, we found that FDT inhibited inflammatory macrophage accumulation by regulating the expression of Selp and Ccl2, which are both involved in monocyte adhesion and migration. The inhibition of monocyte recruitment by FDT is a new perspective to elucidate the anti-atherosclerotic mechanism of FDT, which has not been adopted in previous studies on FDT. Our results may help to elucidate the therapeutic mechanism of FDT against CVDs and provide potential therapeutic targets.

12.
Front Pharmacol ; 15: 1361379, 2024.
Article in English | MEDLINE | ID: mdl-38590639

ABSTRACT

Background and purpose: The Bushenyiqi decoction (BYD), a contemporary prescription of traditional Chinese medicine (TCM), has been observed to significantly ameliorate asthma symptoms in patients based on clinical observations. Although multi-component and multi-target characteristics are important attributes of BYD treatment, its pharmacological effect on asthma and the underlying mechanism of action remain unclear. Method: Network pharmacology: the asthma-related genes were retrieved from the GeneCards and OMIM database. The active constituents of BYD and their corresponding target genes were collected from the TCMSP database. The underlying pathways associated with overlapping targets between BYD and asthma were identified through GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Experimental validation: pulmonary function tests, enzyme-linked immunosorbent assay (ELISA), Hematoxylin and eosin (HE), periodic acid-Schiff (PAS), and Masson's trichrome stainings were conducted to validate the efficacy of BYD in ameliorating airway inflammation in allergic asthma mice. Western blot (WB) and molecular docking were performed to confirm the involvement of the underlying pathway in BYD treatment of asthma. Results: The results of animal experiments demonstrated that BYD may improve airway responsiveness and suppress airway inflammation in allergic asthma mice. The network pharmacological analysis revealed the involvement of 11 potentially key active components, 9 potential key targets, and the phosphatidylinositol3 kinase-RAC-α serine/threonine-protein kinase (PI3K/AKT) signaling pathway in the mechanism of action of BYD for asthma treatment. Our findings have confirmed that BYD effectively alleviated airway inflammation by targeting interleukin 6 (IL-6), epidermal growth factor receptor (EGFR), and hypoxia inducible factor 1 alpha (HIF1A), with quercetin, kaempferol, and luteolin performing as the pivotal active constituents. BYD may potentially reduce inflammatory cell infiltration in lung tissues by regulating the PI3K/AKT signaling pathway. Conclusion: In conclusion, the integration of network pharmacology and biological experiments has demonstrated that key constituents of BYD, such as quercetin, kaempferol, and luteolin, exhibit targeted effects on IL-6, EGFR, and HIF1A in combating asthma-related inflammation through inhibition of the PI3K/AKT signaling pathway. The findings of this investigation provide evidence supporting the effectiveness of TCM's "bushenyiqi" therapy in asthma management, as corroborated by contemporary medical technology.

13.
Small ; : e2311197, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593375

ABSTRACT

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

14.
Dev Neurosci ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583418

ABSTRACT

INTRODUCTION: Transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis, has diverse roles in various physiological processes. Enhancing lysosomal function by TFEB activation has recently been implicated in restoring neural stem cells (NSCs) function. Overexpression of TFEB can inhibit the cell cycle of newborn cortical NSCs. It has also been found that TFEB regulates the pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy lysosomal biogenesis. This study aims to explore the effects of TFEB activation on neurogenesis in vivo through transgenic mice. METHODS: We developed a GFAP-driven TFEB overexpression mouse model (TFEB GoE) by crossing the floxed TFEB overexpression mice and hGFAP-cre mice. We performed immunohistochemical and fluorescence staining on brain tissue from newborn mice to assess neurogenesis changes, employing markers such as GFAP, Nestin, Ki67, DCX, Tbr1 and Neun to trace different stages of neural development and cell proliferation. RESULTS: TFEB GoE mice exhibited premature mortality, dying at 10-20 days after birth. Immunohistochemical analysis revealed significant abnormalities, including disrupted hippocampal structure and cortical layering. Compared to control mice, TFEB GoE mice showed a marked increase in radial glial cells (RGCs) in the hippocampus and cortex, with Ki67 staining indicating these cells were predominantly in a quiescent state. This suggests that TFEB overexpression suppresses RGCs proliferation. Additionally, abnormal distributions of migrating neurons and mature neurons were observed, highlighted by DCX, Tbr1 and Neun staining, indicating a disruption in normal neurogenesis. CONCLUSION: This study, using transgenic animals in vivo, revealed that GFAP-driven TFEB overexpression leads to abnormal neural layering in the hippocampus and cortex by dysregulating neurogenesis. Our study is the first to discover the detrimental impact of TFEB overexpression on neurogenesis during embryonic development, which has important reference significance in future TFEB overexpression interventions in NSCs for treatment.

15.
Nat Commun ; 15(1): 3217, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622141

ABSTRACT

Commonly-used ether and carbonate electrolytes show distinct advantages in active lithium-metal anode and high-voltage cathode, respectively. While these complementary characteristics hold promise for energy-dense lithium metal batteries, such synergy cannot be realized solely through physical blending. Herein, a linear functionalized solvent, bis(2-methoxyethyl) carbonate (BMC), is conceived by intramolecularly hybridizing ethers and carbonates. The integration of the electron-donating ether group with the electron-withdrawing carbonate group can rationalizes the charge distribution, imparting BMC with notable oxidative/reductive stability and relatively weak solvation ability. Furthermore, BMC also offers advantages including the ability to slightly dissolve LiNO3, excellent thermostability and nonflammability. Consequently, the optimized BMC-based electrolyte, even with typical concentrations in the single solvent, demonstrates high-voltage tolerance (4.4 V) and impressive Li plating/stripping Coulombic efficiency (99.4%). Moreover, it fulfills practical lithium metal batteries with satisfactory cycling performance and exceptional tolerance towards thermal/mechanical abuse, showcasing its suitability for safe high-energy lithium metal batteries.

16.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675434

ABSTRACT

Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb-compound-biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)-saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)-lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)-glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA's downstream regulators [interleukin (IL)-1ß and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG's effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG.

17.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38614099

ABSTRACT

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Subject(s)
CD3 Complex , Lymphocyte Activation , T-Lymphocytes , Tumor Escape , Tumor Microenvironment , Animals , CD3 Complex/metabolism , CD3 Complex/immunology , Humans , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Dogs , Neoplasms/immunology , Cell Line, Tumor , Female , Protein Binding , ZAP-70 Protein-Tyrosine Kinase/metabolism , Antibodies, Neutralizing/immunology , Mice, Inbred C57BL
18.
Nature ; 629(8010): 86-91, 2024 May.
Article in English | MEDLINE | ID: mdl-38658763

ABSTRACT

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

19.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38568633

ABSTRACT

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

20.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610551

ABSTRACT

As an indispensable component of coal-fired power plants, boilers play a crucial role in converting water into high-pressure steam. The oxygen content in the flue gas is a crucial indicator, which indicates the state of combustion within the boiler. The oxygen content not only affects the thermal efficiency of the boiler and the energy utilization of the generator unit, but also has adverse impacts on the environment. Therefore, accurate measurement of the flue gas's oxygen content is of paramount importance in enhancing the energy utilization efficiency of coal-fired power plants and reducing the emissions of waste gas and pollutants. This study proposes a prediction model for the oxygen content in the flue gas that combines the whale optimization algorithm (WOA) and long short-term memory (LSTM) networks. Among them, the whale optimization algorithm (WOA) was used to optimize the learning rate, the number of hidden layers, and the regularization coefficients of the long short-term memory (LSTM). The data used in this study were obtained from a 350 MW power generation unit in a coal-fired power plant to validate the practicality and effectiveness of the proposed hybrid model. The simulation results demonstrated that the whale optimization algorithm-long short-term memory (WOA-LSTM) model achieved an MAE of 0.16493, an RMSE of 0.12712, an MAPE of 2.2254%, and an R2 value of 0.98664. The whale optimization algorithm-long short-term memory (WOA-LSTM) model demonstrated enhancements in accuracy compared with the least squares support vector machine (LSSVM), long short-term memory (LSTM), particle swarm optimization-least squares support vector machine (PSO-LSSVM), and particle swarm optimization-long short-term memory (PSO-LSTM), with improvements of 4.93%, 4.03%, 1.35%, and 0.49%, respectively. These results indicated that the proposed soft sensor model exhibited more accurate performance, which can meet practical requirements of coal-fired power plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...