Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Food Chem ; 456: 139624, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850608

ABSTRACT

The limited availability of phospholipase A1 (PLA1) has posed significant challenges in enzymatic degumming. In this study, a novel PLA1 (UM2) was introduced to address this limitation, which had a unique thermo-responsive ability to switch phospholipase and lipase activities in response to temperature variations. Remarkably, UM2 displayed an unprecedented selectivity under optimized conditions, preferentially hydrolyzing phospholipids over triacylglycerols-a specificity superior to that of commercial PLA1. Moreover, UM2 demonstrated high efficiency in hydrolyzing phospholipids with a predilection for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A practical application of UM2 on crude flaxseed oil led to a dramatic reduction in phosphorus content, plummeting from an initial 384.06 mg/kg to 4.38 mg/kg. Broadening its industrial applicability, UM2 effectively performed enzymatic degumming for other distinct crude vegetable oils with a unique phospholipid composition. Collectively, these results highlighted the promising application of UM2 in the field of oil degumming.

2.
Article in English | MEDLINE | ID: mdl-38878162

ABSTRACT

Activation of fatty acids as acyl-adenylates by fatty acid-AMP ligase (FAAL) is a well-established process contributing to the formation of various functional natural products. Enzymatic characterization of FAALs is pivotal for unraveling both the catalytic mechanism and its role in specific biosynthetic pathways. In this study, we recombinantly expressed and characterized a novel FAAL derived from marine Pseudoalteromonas citrea (PcFAAL). PcFAAL was a cold-adapted neutral enzyme, demonstrating optimal activity at 30 °C and pH 7.5. Notably, its specific activity relied on the presence of Mg2+; however, higher concentrations exceeding 10 mM resulted in inhibition of enzyme activity. Various organic solvents, especially water-immiscible organic solvents, demonstrated an activating effect on the activity of PcFAAL on various fatty acids. The specific activity exhibited a remarkable 50-fold increase under 4% (v/v) n-hexane compared to the aqueous system. PcFAAL displayed a broad spectrum of fatty acid substrate selectivity, with the highest specific activity for octanoic acid (C8:0), and the catalytic efficiency (kcat/Km) for octanoic acid was determined to be 1.8 nM-1·min-1. Furthermore, the enzyme demonstrated biocatalytic promiscuity in producing a class of N-acyl amino acid natural products, as verified by LC-ESI MS. Results indicated that the PcFAAL exhibits promiscuity towards 10 different kinds of amino acids and further demonstrated their potential value in the biosynthesis of corresponding functional N-acyl amino acids.

3.
Cancer Lett ; 595: 217002, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38823761

ABSTRACT

The mechanism underlying N6-methyladenosine (m6A) modification in bladder cancer (BC) remains elusive. We identified that the RBM15/METTL3 complex enhances m6A modification and promotes the ENO1 protein translation efficiency through its 359A site by depending on YTHDF1 in BC cells. In the tumor microenvironment, TGF-ß effectively stimulates RBM15/METTL3 expression to improve ENO1 mRNA m6A modification through the Smad2/3 pathway. Reduced ENO1 m6A levels hamper tumor proliferation both in vitro and in vivo. Mechanistically, ENO1 augments PCNA protein stability by reducing its K48-linked ubiquitination and thus prevents protein degradation through the endoplasmic reticulum-associated degradation pathway. According to the subsequent experiments, the ENO1 inhibitor significantly reduced tumor proliferation both in vitro and in vivo. Our study highlights the significance of RBM15/METTL3 complex-mediated ENO1 mRNA m6A modification in ENO1 expression. It also reveals a novel mechanism by which ENO1 promotes BC progression, thereby suggesting that ENO1 can be a therapeutic target for BC.


Subject(s)
Adenosine , Cell Proliferation , DNA-Binding Proteins , Disease Progression , Phosphopyruvate Hydratase , RNA-Binding Proteins , Tumor Suppressor Proteins , Ubiquitination , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Humans , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Protein Biosynthesis/drug effects , Mice, Nude , Biomarkers, Tumor , Proliferating Cell Nuclear Antigen
4.
Curr Res Food Sci ; 8: 100770, 2024.
Article in English | MEDLINE | ID: mdl-38860263

ABSTRACT

The objective of this work was to completely replace margarine with peanut diacylglycerol oil/ethyl cellulose-glycerol monostearate oleogel (DEC/GMS) oleogel, and evaluate its effect on starch digestibility of cakes. The in vitro digestibility analysis demonstrated that the DEC/GMS-6 cake exhibited a 26.36% increase in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cakes formulated with margarine. The increased SDS and RS contents might mainly be due to the hydrophobic nature of OSA-wheat flour, which could promote the formation of lipid-amylose complexes with GMS and peanut diacylglycerol oil. XRD pattern suggested that the presence of GMS in DEC-based oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of GMS resulted in a significant increase in gelatinization enthalpy, rising from 249.7 to 551.9 J/g, which indicates an improved resistance to gelatinization. The FTIR spectra indicated that the combination of GMS could enhance the hydrogen bonding forces and short-range ordered structure in DEC-based cakes. The rheological analysis revealed that an increase in GMS concentration resulted in enhanced viscoelasticity of DEC-based cake compared to TEC-based cakes. The DEC-based cakes exhibited a more satisfactory texture profile and higher overall acceptability than those of TEC-based cakes. Overall, these findings demonstrated that the utilization of DEC-based oleogel presented a viable alternative to commercial margarine in the development of cakes with reduced starch digestibility.

5.
Cancer Lett ; 593: 216964, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38762193

ABSTRACT

Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-ß) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-ß promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-ß blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumor immune responses. In conclusion, M2-TAM-derived TGF-ß promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-ß receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.


Subject(s)
B7-H1 Antigen , Membrane Proteins , STAT3 Transcription Factor , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Transforming Growth Factor beta , Tumor Escape , Tumor Microenvironment , Tumor-Associated Macrophages , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , STAT3 Transcription Factor/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Humans , Thyroid Hormones/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Tumor Microenvironment/immunology , Animals , Transforming Growth Factor beta/metabolism , Mice , Cell Line, Tumor , Carrier Proteins/metabolism , Carrier Proteins/genetics , Signal Transduction , Glycolysis , Cell Nucleus/metabolism , Naphthoquinones
6.
Investig Clin Urol ; 65(3): 263-278, 2024 May.
Article in English | MEDLINE | ID: mdl-38714517

ABSTRACT

PURPOSE: Myofibroblastic cancer-associated fibroblasts (myCAFs) are important components of the tumor microenvironment closely associated with tumor stromal remodeling and immunosuppression. This study aimed to explore myCAFs marker gene biomarkers for clinical diagnosis and therapy for patients with bladder cancer (BC). MATERIALS AND METHODS: BC single-cell RNA sequencing (scRNA-seq) data were obtained from the National Center for Biotechnology Information Sequence Read Archive. Transcriptome and clinical data were downloaded from The Cancer Genome Atlas and the Gene Expression Omnibus databases. Subsequently, univariate Cox and LASSO (Least Absolute Shrinkage and Selection Operator regression) regression analyses were performed to construct a prognostic signature. Immune cell activity was estimated using single-sample gene set enrichment analysis whilst the TIDE (tumor immune dysfunction and exclusion) method was employed to assess patient response to immunotherapy. The chemotherapy response of patients with BC was evaluated using genomics of drug sensitivity in cancer. Furthermore, Immunohistochemistry was used to verify the correlation between MAP1B expression and immunotherapy efficacy. The scRNA-seq data were analyzed to identify myCAFs marker genes. RESULTS: Combined with bulk RNA-sequencing data, we constructed a two-gene (COL6A1 and MAP1B) risk signature. In patients with BC, the signature demonstrated outstanding prognostic value, immune infiltration, and immunotherapy response. This signature served as a crucial guide for the selection of anti-tumor chemotherapy medications. Additionally, immunohistochemistry confirmed that MAP1B expression was significantly correlated with immunotherapy efficacy. CONCLUSIONS: Our findings revealed a typical prognostic signature based on myCAF marker genes, which offers patients with BC a novel treatment target alongside theoretical justification.


Subject(s)
Biomarkers, Tumor , Cancer-Associated Fibroblasts , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/drug therapy , Prognosis , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Transcriptome , Treatment Outcome , Myofibroblasts
7.
Food Res Int ; 184: 114243, 2024 May.
Article in English | MEDLINE | ID: mdl-38609222

ABSTRACT

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Subject(s)
Lipidomics , Lipolysis , Fatty Acids , Fatty Acids, Nonesterified , Linoleic Acid , Rice Bran Oil
8.
J Hazard Mater ; 470: 134179, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565011

ABSTRACT

Microplastics (MPs) and fluoxetine are ubiquitous emerging pollutants in aquatic environments that may interact with each other due to the carrier effects of MPs, posing unpredictable risks to non-target organisms. However, limited studies have focused on the carrier effects of MPs in the aquatic food chain. This study evaluated the influences of polystyrene MPs on the trophic transfer and biotoxicity of fluoxetine in a simple food chain composed of brine shrimp (Artemia nauplii) and zebrafish (Danio rerio). The finding reveals that carrier effects of MPs enhanced the accumulation of waterborne fluoxetine in brine shrimp, but suppressed that in zebrafish due to the distinct retention times. The accumulated fluoxetine in shrimp was further transferred to fish through the food chain, which was alleviated by MPs due to their cleaning effects. In addition, the specific neurotransmission biotoxicity in fish induced by fluoxetine was mitigated by MPs, whilst the oxidative damage, apoptosis, and immune responses in zebrafish were reversely enhanced by MPs due to the stimulating effect. These findings highlight the alleviating effects of MPs on the trophic transfer and specific biotoxicity of fluoxetine in the food chain, providing new insights into the carrier effects of MPs in aquatic environments in the context of increasing global MP pollution.


Subject(s)
Artemia , Fluoxetine , Food Chain , Microplastics , Polystyrenes , Water Pollutants, Chemical , Zebrafish , Animals , Fluoxetine/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Polystyrenes/toxicity , Artemia/drug effects
9.
Redox Biol ; 72: 103154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626575

ABSTRACT

Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.


Subject(s)
Angiotensin II , Ferroptosis , Receptors, Purinergic P2X7 , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Animals , Angiotensin II/metabolism , Mice , Humans , Mice, Knockout , Ventricular Remodeling , Myocardium/metabolism , Myocardium/pathology , Male , Protein Binding , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/genetics
10.
Front Oncol ; 14: 1308399, 2024.
Article in English | MEDLINE | ID: mdl-38549941

ABSTRACT

Urothelial carcinoma (UC) with testicular metastasis is extremely rare, and its modes of metastasis, prognosis, and treatment are unclear. In this report, we present an extraordinarily rare case of testicular metastasis arising from UC 8 years after surgery. The patient underwent left orchiepididymectomy and received immunotherapy postoperatively. After a 6-month follow-up, there were no signs of recurrence. Moreover, the clinical characteristics, metastasis pattern, and treatment plan were also summarized based on 14 earlier reported cases of UC with testicular metastasis.

11.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535690

ABSTRACT

Flexible thermoelectric generators (FTEGs), which can overcome the energy supply limitations of wearable devices, have received considerable attention. However, the use of toxic Te-based materials and fracture-prone electrodes constrains the application of FTEGs. In this study, a novel Ag2Se and Poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT:PSS)/multi-walled carbon nanotube (MWCNT) FTEG with a high output performance and good flexibility is developed. The thermoelectric columns formulated in the work are environmentally friendly and reliable. The key enabler of this work is the use of embedded EGaIn electrodes, which increase the temperature difference collected by the thermoelectric column, thereby improving the FTEG output performance. Additionally, the embedded EGaIn electrodes could be directly printed on polydimethylsiloxane (PDMS) molds without wax paper, which simplifies the preparation process of FTEGs and enhances the fabrication efficiency. The FTEG with embedded electrodes exhibits the highest output power density of 25.83 µW/cm2 and the highest output power of 10.95 µW at ΔT = 15 K. The latter is 31.6% higher than that of silver-based FTEGs and 2.5% higher than that of covered EGaIn-based FTEGs. Moreover, the prepared FTEG has an excellent flexibility (>1500 bends) and output power stability (>30 days). At high humidity and high temperature, the prepared FTEG maintains good performance. These results demonstrate that the prepared FTEGs can be used as a stable and environmentally friendly energy supply for wearable devices.

12.
Food Chem ; 447: 138946, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38498952

ABSTRACT

Rice bran, recognized for its rich lipids and health-beneficial bioactive compounds, holds considerable promise in applications such as rice bran oil production. However, its susceptibility to lipid hydrolysis and oxidation during storage presents a significant challenge. In response, we conducted an in-depth metabolic profiling of rice bran over a storage period of 14 days. We focused on the identification of bioactive compounds and functional lipid species (25 acylglycerols and 53 phospholipids), closely tracking their dynamic changes over time. Our findings revealed significant reductions in these lipid molecular species, highlighting the impact of rancidity processes. Furthermore, we identified 19 characteristic lipid markers and elucidated that phospholipid and glycerolipid metabolism were key metabolic pathways involved. By shedding light on the mechanisms driving lipid degradation in stored rice bran, our study significantly advanced the understanding of lipid stability. These information provided valuable insights for countering rancidity and optimizing rice bran preservation strategies.


Subject(s)
Lipidomics , Oryza , Hydrolysis , Oxidation-Reduction , Phospholipids , Lipolysis , Rice Bran Oil
13.
J Thromb Haemost ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38554936

ABSTRACT

BACKGROUND: Patients with cancer are at an increased risk of developing a hypercoagulative phenotype and venous thromboembolism. However, no clinical trial has yet confirmed that anticoagulant therapy improves cancer prognosis, and the mechanism underlying hypercoagulation in patients with bladder cancer is not well understood. OBJECTIVES: We hypothesized that the prognostic genes affect tumor progression via tumor-mediated coagulation. METHODS: We detected the most significant prognostic genes of bladder cancer with The Cancer Genome Atlas dataset and validated them in 2 Gene Expression Omnibus datasets and 1 ArrayExpress dataset. Immunohistochemical tests were performed on a cohort of 80 individuals to further examine the prognostic genes. For the most reliable prognostic gene, its influence on coagulation was evaluated with gene knockdown followed by next-generation sequencing and cellular and animal experiments. RESULTS: Depletion of microtubule interacting and trafficking domain containing 1 (MITD1), a major prognostic gene of bladder cancer, significantly increased the tissue factor (TF) expression. MITD1 deficiency led to cytokinesis arrest, which, in turn, promoted the TF expression via unfolded protein response and c-Jun. The knockdown of IRE1, an essential kinase of unfolded protein response or the inactivation of c-Jun using c-Jun N-terminal kinase inhibitors weakened MITD1 deficiency- or dithiothreitol-induced TF upregulation. Cells lacking MITD1 promoted coagulation and metastasis in the experimental metastasis assay. CONCLUSION: Our findings suggest the novel role of tumor prognostic genes upon the development of hypercoagulative phenotype and venous thromboembolism, thereby underlining the importance of anticoagulant therapy and shedding light on the therapeutic value of targeting MITD1 in bladder cancer.

14.
Heliyon ; 10(3): e25223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322976

ABSTRACT

Background: Thromboelastogram (TEG) is an effective indicator that monitors the dynamic changes of blood coagulation in real-time. It still remains controversial about the performance and influence of coagulation at high altitude. The present study intends to describe comprehensively the clinical features of TEG in populations exposed to or transferring from high altitude. Methods: Two groups were recruited in the present study. Group A included young males who worked at high-altitude (4888 m or 5418 m) areas for some time, while Group B included young males who had recently returned from high-altitude (4888 m or 5418 m) areas. Medical examinations were performed using portable devices. Spearman's test was used to evaluate the correlations between thromboelastogram (TEG) variables and other variables. Logistic regression analysis was used to analyze the factors affecting various abnormal TEG variables. Results: A total of 51 adult males were included in the two groups. Significantly increased reaction time (R) and decreased maximum amplitude (MA) were found in group B (P < 0.05). No significant differences were observed in the comparisons of K and angle between the two groups. Various TEG variables were identified to be correlated with different coagulation and biochemical variables. Logistic regression analysis demonstrated that abnormal R was independently associated with direct bilirubin, and abnormal K was independently associated with the platelet count in Group A (P < 0.05). However, none of the factors were independently associated with abnormal TEG variables in Group B. Conclusion: Populations exposed to or transferring from high altitudes are characterized by different TEG characteristics. Our findings give a comprehensive description of the complex interaction between TEG indexes, coagulation dynamics, and hematological parameters, which can help guide the development of appropriate medical approaches tailored to the unique needs of these populations.

15.
J Colloid Interface Sci ; 661: 228-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38301461

ABSTRACT

HYPOTHESIS: A critical challenge in the enzymatic conversion of acylglycerols is the limited exposure of the enzyme dissolved in the aqueous solution to the hydrophobic substrate in the oil phase. Positioning the enzyme in a microenvironment with balanced hydrophobicity and hydrophilicity in Pickering emulsion will facilitate the acylglycerol-catalyzing reactions at the interface between the oil and liquid phases. EXPERIMENTS: In this work, to overcome the challenge of biphasic catalysis, we report a method to immobilize enzymes in polyethylene glycol (PEG)-based hydrogel microparticles (HMPs) at the interface between the oil and water phases in Pickering emulsion to promote the enzymatic conversion of acylglycerols. FINDINGS: 3 wt% of HMPs can stabilize the oil-in-water Pickering emulsion for at least 14 days and increase the viscosity of emulsions. Lipase-HMP conjugates showed significantly higher hydrolytic activity in Pickering emulsion; HMP-immobilized lipase SMG1 showed an activity about three times that of free lipase SMG1. Co-immobilization of a lipase and a fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) in Pickering emulsion enables light-driven cascade conversion of triacylglycerols to hydrocarbons, transforming waste oil to renewable biofuels in a green and sustainable approach. HMPs stabilize the Pickering emulsion and promote interfacial biocatalysis in converting acylglycerols to renewable biofuels.


Subject(s)
Chlorella , Glycerides , Emulsions/chemistry , Hydrogels , Biofuels , Lipase/chemistry
16.
Food Chem ; 443: 138476, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38306908

ABSTRACT

The positional distribution of palmitic acid (PA) in human milk fat substitutes (HMFSs) plays a pivotal role in mimicking the nutritional profile of human milk fat for nourishing non-breastfed infants. This study innovatively introduced a streamlined enzymatic process for preparing HMFSs rich in sn-2 PA using palm stearin, a PA-rich source without the necessity for positional distribution of PA. The initial step involved enhancing the sn-2 PA concentration through enzymatic interesterification using Lipase UM1, which exhibited superior catalytic efficiency than Novozym 435. This process increased the sn-2 PA level from 40.98 % to 64.51 %. Subsequently, acidolysis was employed to reduce PA levels by replacing PA at sn-1,3 positions using sn-1,3-regioselective lipases. The PA content decreased from 60.64 % to 26.73 %, simultaneously raising the relative sn-2 PA concentration to 71.57 %, meeting the benchmarks for HMFSs. This study establishes a robust conceptual framework for the prospective industrial synthesis of HMFSs.


Subject(s)
Fat Substitutes , Milk, Human , Infant , Humans , Animals , Prospective Studies , Triglycerides , Palmitic Acid , Catalysis , Fatty Acids , Milk
18.
J Oleo Sci ; 73(2): 135-145, 2024.
Article in English | MEDLINE | ID: mdl-38311404

ABSTRACT

In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.


Subject(s)
Arachis , Diglycerides , Oils , Organic Chemicals/chemistry
19.
Int J Biol Macromol ; 262(Pt 2): 130131, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354937

ABSTRACT

Deleted in breast cancer 1 (DBC1) is a human nuclear protein that modulates the activities of various proteins involved in cell survival and cancer progression. Oxidized form of nicotinamide adenine dinucleotide (NAD+) is suggested to bind to the Nudix homology domains (NHDs) of DBC1, thereby regulating DBC1-Poly (ADP-ribose) polymerase 1 (PARP1) interactions, resulting in the restoration of DNA repair. Using Nuclear Magnetic Resonance (NMR) and Isothermal Titration Calorimetry (ITC), we confirmed NAD+ and its precursor nicotinamide mononucleotide (NMN) both bind the NHD domain of DBC1 (DBC1354-396). NAD+ likely interacts with DBC1354-396 through hydrogen bonding, with a binding affinity (8.99 µM) nearly twice that of NMN (17.0 µM), and the key binding sites are primarily residues E363 and D372, in the agreement with Molecular Docking experiments. Molecular Dynamics (MD) simulation further demonstrated E363 and D372's anchoring role in the binding process. Additional mutagenesis experiments of E363 and D372 confirmed their critical involvement of ligand-protein interactions. These findings lead to a better understanding of how NAD+ and NMN regulate DBC1, thereby offering insights for the development of targeted therapies and drug research focused on DBC1-associated tumors.


Subject(s)
DNA Repair , NAD , Humans , NAD/metabolism , Molecular Docking Simulation , Cell Survival , Binding Sites
20.
Aquat Toxicol ; 268: 106852, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310667

ABSTRACT

Benzophenone-3 (BP-3) is a commonly used ultraviolet absorber that has the potential to accumulate in organisms, leading to toxicity. Benzophenone-8 (BP-8) is one of the major metabolites of BP-3. In this study, zebrafish were exposed to different concentrations of BP-3 and BP-8 (1 µg/L, 30 µg/L, and 300 µg/L) to investigate their accumulation and toxic effects in various tissues, including zebrafish brain, gut, and liver. The analysis focused on neurotoxicity, oxidative damage, inflammation, and gene expressions. The results showed that both BP-3 and BP-8 accumulated in the tissues, with the highest concentration observed in the gut, followed by the liver and brain. BP-8 exhibited a stronger ability to accumulate. In the brain, exposure to 1 µg/L of BP-3 and BP-8 promoted cortisol production, while higher exposures (30 µg/L and 300 µg/L) inhibited acetylcholinesterase activity and suppressed cortisol production. In the gut, both BP-3 and BP-8 exposures disrupted oxidative stress, inflammatory immunity, and apoptosis functions. In the liver, BP-3 and BP-8 affected hepatic metabolism, oxidative stress, apoptosis, and inflammatory immunity. Comparing gene expression in the brain, gut, and liver, it was found that BP-3 and BP-8 had a lower effect on gene expression in the brain, while the effect on the gut and liver was significantly higher. BP-8 generally had a higher effect than BP-3, which aligns with the observed accumulation pattern. These findings provide valuable insights for the risk assessment of BP-3 and BP-8 in the aquatic environment.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Acetylcholinesterase/metabolism , Hydrocortisone , Water Pollutants, Chemical/toxicity , Benzophenones/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...