Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(44): e202309111, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37698233

ABSTRACT

Recently, the application of computational tools to the rational design of catalysts has received considerable attention, but progress has been limited by the reliance on databases and because mechanistic data have been almost neglected. Herein, we report a new strategy for catalyst design, designated catalyst-oriented design based on elementary reactions (CODER), which fully utilizes mechanistic data, combines the strengths of computational tools and researcher experience. CODER enabled the development of extremely efficient Pd catalysts for C-N coupling, which markedly improved the efficiency of the synthesis of widely used triarylamine optoelectronic materials by enhancing the turnover numbers (up to 340000) to 1-3 orders of magnitude towards literature values.

2.
J Infect Dis ; 222(3): 443-455, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32115640

ABSTRACT

BACKGROUND: Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS: Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-ß in serum were tested with enzyme-linked immunosorbent assay. RESULTS: Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-ß, in serum. CONCLUSIONS: Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.


Subject(s)
Emodin/pharmacology , Encephalitis/drug therapy , Hand, Foot and Mouth Disease/virology , Signal Transduction/drug effects , Toll-Like Receptor 3/metabolism , Animals , Blotting, Western , Cells, Cultured , Encephalitis/immunology , Encephalitis/virology , Enterovirus/immunology , Enzyme-Linked Immunosorbent Assay , Immunity, Innate , Interferon-beta/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , RNA, Messenger/drug effects , Toll-Like Receptor 3/genetics
3.
Front Mol Neurosci ; 12: 83, 2019.
Article in English | MEDLINE | ID: mdl-31080403

ABSTRACT

Herpes simplex encephalitis (HSE) is the most common infectious disease of the central nervous system worldwide. However, the pathogenesis of HSE is not clear. Research has shown that the immune response mediated by the toll-like receptor 3 (TLR3) signaling pathway is essential to protect the central nervous system against herpes simplex virus (HSV) infection. However, an excessive immune response may cause tissue damage accompanied by pathological changes. The aim of this study was to explore the molecular mechanism via which corilagin controls HSE through the TLR3 signaling pathway in vitro and in vivo. Cells and mice were pre-treated with polyriboinosinic polyribocytidylic acid [poly(I:C)] or HSV type 1, and then treated with corilagin. After treatment, the mRNA and protein levels of TLR3, TLR-like receptor-associated interferon factor (TRIF), tumor necrosis factor (TNF) receptor type 1-associated DEATH domain protein (TRADD), TNF receptor-associated factor (TRAF) 3 and 6, nuclear factor-kappa-B (NF-κB) essential modulator (NEMO), P38, and interferon regulatory factor 3 (IRF3) were decreased. Interleukin-6 (IL-6), TNF-α, and type 1 interferon-ß were also decreased. When TLR3 expression was silenced or increased, corilagin still inhibited the expression of TLR3 and its downstream mediators. Hematoxylin-eosin (HE) staining and immunohistochemical examinations of mouse brain tissues revealed that corilagin lessened the degree of brain inflammation. Altogether, these results suggest that corilagin may regulate the immune response in HSE and relieve inflammatory injury by interfering with the TLR3 signaling pathway.

4.
Front Pharmacol ; 9: 962, 2018.
Article in English | MEDLINE | ID: mdl-30186181

ABSTRACT

Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...