Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(2): 266-269, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194544

ABSTRACT

We study a quasi-one-dimensional non-reciprocal Hermitian hourglass photonic lattice that can accomplish multiple functions. Under the effect of non-reciprocal coupling, this lattice can produce an energy isolation effect, two kinds of flatbands, and energy band inversion. The excitation and propagation of a single energy band and multiple energy bands can be realized; in the flatband condition, the system has compact localized states, and the flatbands can be excited by a straightforward method. Our findings advance the theory of energy band regulation in artificial photonic lattices.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(12): 2291-2297, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36520748

ABSTRACT

Photonic moiré-like lattices, a readily accessible platform for realizing the spatial localization of light, attract intensive attention due to their unique flatband characteristics. In this paper, a periodic moiré-like lattice with embedded defects is proposed theoretically, and the linear propagation of the probe beam in such a system is investigated intensively. The results show that the positions of defects in periodic moiré-like lattices depend on the sublattice rotation angle. Further studies show that the localization of light could be improved by adjusting the apodization function of defects. In addition, the experimental observation of the moiré-like lattice with apodized defects also confirms the theoretical analysis. Our study enriches the physical connotation of photonic moiré lattices and guides the design of novel photonic crystal fibers.

3.
Opt Lett ; 47(20): 5437-5440, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36240383

ABSTRACT

We propose a mechanism to achieve the group velocity control of bifurcation light via an imaginary coupling effect in the non-reciprocal lattice. The physical model is composed of two-layer photonic lattices with non-reciprocal coupling in each unit cell, which can support a real energy spectrum with a pair of Dirac points due to the hermicity. Furthermore, we show that the systems experience topological phase transition at the Dirac points, allowing the existence of topological edge states on the left or right boundaries of respective lattice layers. By adjusting the imaginary coupling and the wave number, the group velocity of the light wave can be manipulated, and bifurcation light transmission can be achieved both at the Dirac points and the condition without the group velocity dispersion. Our work might guide the design of photonic directional couplers with group velocity control functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...