Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124474, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38763018

ABSTRACT

In recent years, aggregation-induced emission luminogens (AIEgens) have witnessed numerous groundbreaking advances in fundamental theoretical research and functional applications. Notably, stimuli-responsive AIEgens have achieved remarkable results, demonstrating immense potential for application in various fields such as chemistry, materials science, biology, and medicine. Herein, two multi-stimuli-responsive cyanostilbene derivatives TPE-CNTPA and PH-CNTPA were synthesized by introducing tetraphenylethylene (TPE) and trifluoromethyl groups, respectively. Primarily, under the combined mechanism of aggregation-induced emission (AIE) and twisted intramolecular charge transfer (TICT), TPE-CNTPA and PH-CNTPA exhibit "on-off-on" fluorescent emission characteristics in solution. Secondly, under 365 nm ultraviolet light irradiation, the photo-induced isomerization of PH-CNTPA causes changes in photophysical property, demonstrating its responsiveness to ultraviolet light. In addition, TPE-CNTPA and PH-CNTPA exhibit high-contrast mechanochromic properties, providing broader possibilities for their potential applications in various fields. Moreover, owing to the unique fluorescence emission characteristics, TPE-CNTPA and PH-CNTP have enormous potential for application in the field of encryption anti-counterfeiting. Besides, PH-CNTPA can be utilized for the detection of trace water in single or mixed solvents, demonstrating outstanding sensitivity and anti-interference properties in different solvents. This research work reveals the potential in the fields of water sensing and anti-counterfeiting for these two multi-stimuli-responsive compounds.

2.
ACS Omega ; 9(14): 16097-16105, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617618

ABSTRACT

Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.

3.
Adv Mater ; 36(6): e2307726, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37775103

ABSTRACT

Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.


Subject(s)
Amnion , Amniotic Fluid , Pregnancy , Female , Humans
4.
Food Chem ; 440: 138244, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38142554

ABSTRACT

Flusilazole is a triazole fungicide with residues that are potentially toxic to humans. It enters the human body mainly through food, although its bactericidal activity is substantial. In this study, an electrochemical sensor Fe/Fe2O3@C with a core-shell structure was constructed to efficiently detect flusilazole by annealing MIL-53(Fe) which was prepared by a simple solvothermal method. Transmission electron microscopy and scanning electron microscopy were used to characterize the apparent morphology of MIL-53(Fe) and Fe/Fe2O3@C, and their structures were further characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, and the mapping of elements by energy dispersive spectroscopy. The electrochemical behavior of Fe/Fe2O3@C in the detection of flusilazole was evaluated by differential pulse voltammetry under optimal conditions. The results of the study indicate that the Fe/Fe2O3@C electrochemical sensor displayed excellent detection capabilities for flusilazole, where the sensor exhibited a wide detection range from 1.00 × 10-4 to 1.00 × 10-12 mol/L with an incredibly low LOD of 593 fM, making it highly sensitive to trace amounts of flusilazole. Moreover, Fe/Fe2O3@C demonstrated superior reproducibility, stability, and resistance to interference, highlighting its reliability in practical applications. The sensor was also successfully utilized to quantitatively detect flusilazole in various real samples, which suggests that Fe/Fe2O3@C has broad-spectrum environmental resistance and can effectively and rapidly detect flusilazole residues in different types of food items and environmental matrices. The study also delved into the mechanism of Fe/Fe2O3@C for the detection of flusilazole, providing a deeper understanding of the functionality of this sensor. Overall, these findings emphasize the practical significance of Fe/Fe2O3@C as an electrochemical sensor, showcasing its potential for real-world applications in food safety and environmental monitoring.


Subject(s)
Food Safety , Silanes , Triazoles , Humans , Reproducibility of Results , Microscopy, Electron, Scanning , Electrochemical Techniques/methods
5.
Aging (Albany NY) ; 15(20): 11331-11368, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37857015

ABSTRACT

OBJECTIVE: The purpose of the study was to investigate the role of exosome and lipid metabolism-related genes (EALMRGs) mRNA levels in the diagnosis and prognosis of Pancreatic Adenocarcinoma (PAAD). METHODS: The mRNA expression pattern of PAAD and pan-cancers with prognostic data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. EALMRGs were acquired from GeneCards and MSigDB database after merging and deduplication. Prognostic EALMRGs were screened through univariate COX regression analysis, and a prognostic model was constructed based on these genes by least absolute shrinkage and selection operator (LASSO) regression. The prognostic value of EALMRGs was then validated in pan-cancer data. The time characteristics ROC curve analysis was performed to evaluate the effectiveness of the prognostic genes. RESULTS: We identified 5 hub genes (ABCB1, CAP1, EGFR, PPARG, SNCA) according to high and low-risk groups of prognoses. The risk formula was verified in three other cohort of pancreatic cancer patients and was explored in pan-cancer data. Additionally, T cell and dendritic cell infiltration was significantly increased in low-risk group. The expression of the 5 hub genes was also identified in single-cell sequencing data of pancreatic cancer with pivotal pathways. Additionally, functional enrichment analysis based on pancreatic cancer data in pancreatic cancer showed that protein serine/threonine kinase activity, focal adhesion, actin binding, cell-substrate junction, organic acid transport, and regulation of transporter activity were significant related to the expression of genes in EALMRGs. CONCLUSIONS: Our risk formula shows potential prognostic value in multiple cancers and manifest pivotal alterations in immune infiltration and biological pathway in pancreatic cancer.


Subject(s)
Adenocarcinoma , Exosomes , Pancreatic Neoplasms , Humans , Adenocarcinoma/genetics , Pancreatic Neoplasms/genetics , Lipid Metabolism , Exosomes/genetics , Prognosis , RNA, Messenger , Pancreatic Neoplasms
6.
Entropy (Basel) ; 25(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37628164

ABSTRACT

The traces used in side-channel analysis are essential to breaking the key of encryption and the signal quality greatly affects the correct rate of key guessing. Therefore, the preprocessing of side-channel traces plays an important role in side-channel analysis. The process of side-channel leakage signal acquisition is usually affected by internal circuit noise, external environmental noise, and other factors, so the collected signal is often mixed with strong noise. In order to extract the feature information of side-channel signals from very low signal-to-noise ratio traces, a hybrid threshold denoising framework using singular value decomposition is proposed for side-channel analysis preprocessing. This framework is based on singular value decomposition and introduces low-rank matrix approximation theory to improve the rank selection methods of singular value decomposition. This paper combines the hard threshold method of truncated singular value decomposition with the soft threshold method of singular value shrinkage damping and proposes a hybrid threshold denoising framework using singular value decomposition for the data preprocessing step of side-channel analysis as a general preprocessing method for non-profiled side-channel analysis. The data used in the experimental evaluation are from the raw traces of the public database of DPA contest V2 and AES_HD. The success rate curve of non-profiled side-channel analysis further confirms the effectiveness of the proposed framework. Moreover, the signal-to-noise ratio of traces is significantly improved after preprocessing, and the correlation with the correct key is also significantly enhanced. Experimental results on DPA v2 and AES_HD show that the proposed noise reduction framework can be effectively applied to the side-channel analysis preprocessing step, and can successfully improve the signal-to-noise ratio of the traces and the attack efficiency.

7.
Adv Mater ; 35(45): e2304141, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37478834

ABSTRACT

Implantable batteries are urgently needed as a power source to meet the demands of the next generation of biomedical electronic devices. However, existing implantable batteries suffer from unsatisfactory energy density, hindering the miniaturization of these devices. Here, a mitochondrion-inspired magnesium-oxygen biobattery that achieves both high energy density and biocompatibility in vivo is reported. The resulting biobattery exhibits a recorded energy density of 2517 Wh L-1 /1491 Wh kg-1 based on the total volume/mass of the device in vivo, which is ≈2.5 times higher than the current state-of-the-art, and can adapt to different environments for stable discharges. The volume of the magnesium-oxygen biobattery can be as thin as 0.015 mm3 and can be scaled up to 400 times larger without reducing the energy density. Additionally, it shows a stable biobattery/tissue interface, significantly reducing foreign body reactions. This work presents an effective strategy for the development of high-performance implantable batteries.


Subject(s)
Bioelectric Energy Sources , Magnesium , Oxygen , Electricity , Prostheses and Implants
8.
Entropy (Basel) ; 25(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372252

ABSTRACT

Lightweight block ciphers are normally used in low-power resource-constrained environments, while providing reliable and sufficient security. Therefore, it is important to study the security and reliability of lightweight block ciphers. SKINNY is a new lightweight tweakable block cipher. In this paper, we present an efficient attack scheme for SKINNY-64 based on algebraic fault analysis. The optimal fault injection location is given by analyzing the diffusion of a single-bit fault at different locations during the encryption process. At the same time, by combining the algebraic fault analysis method based on S-box decomposition, the master key can be recovered in an average time of 9 s using one fault. To the best of our knowledge, our proposed attack scheme requires fewer faults, is faster to solve, and has a higher success rate than other existing attack methods.

9.
Adv Mater ; 35(32): e2302997, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37159396

ABSTRACT

Electrical stimulation is a promising strategy for treating neural diseases. However, current energy suppliers cannot provide effective power for in situ electrical stimulation. Here, an implantable tubular zinc-oxygen battery is reported as the power source for in situ electrical stimulation during the neural repair. The battery exhibited a high volumetric energy density of 231.4 mWh cm-3 based on the entire anode and cathode in vivo. Due to its superior electrochemical properties and biosafety, the battery can be directly wrapped around the nerve to provide in situ electrical stimulation with a minimal size of 0.86 mm3 . The cell and animal experiments demonstrated that the zinc-oxygen battery-based nerve tissue engineering conduit effectively promoted regeneration of the injured long-segment sciatic nerve, proving its promising applications for powering implantable neural electronics in the future.


Subject(s)
Oxygen , Zinc , Animals , Zinc/chemistry , Electric Power Supplies , Prostheses and Implants , Electric Stimulation
10.
ACS Omega ; 7(33): 28820-28830, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36033654

ABSTRACT

Carbon black is the most frequently applied conductive additive in rubber and polymer composites. In this work, we show how a carbon black microstructure in a polymer matrix can be conclusively modeled based on carbon black aggregation as well as an agglomeration mechanism using a state-of-the-art mathematical model. This novel and flexible microstructural modeling method enables us to virtually investigate the morphology of conductive additives within a polymer matrix and can be adapted to many conductive polymer combinations used for different applications. Furthermore, we calculate the electrical conductivity of the composite using a finite volume-based as well as a discrete element-based simulation technique and validate the results with experimental data. Utilizing a novel discrete element method (DEM) modeling technique, we were able to improve calculation times by a factor of 12.2 compared to finite volume method (FVM) simulations while maintaining high accuracy. Using this approach, we are able to predict the required carbon black content and minimize the amount of additive to create a polymer composite with a designated target conductivity.

11.
J Immunol Res ; 2022: 4903333, 2022.
Article in English | MEDLINE | ID: mdl-35879950

ABSTRACT

This study was designed to observe the treatment effects of flavokawain B (FKB) on gastric cancer both in SGC-7901 cells and nude mice. When SGC-7901 cells were exposed to 10 µg/mL FKB, cellular proliferative and apoptotic capacities and cell cycle were detected utilizing CCK-8 and flow cytometry assays. The results showed that FKB treatment induced cell apoptosis and G2/M arrest and suppressed cell proliferation for SGC-7901 cells. Western blot results showed that FKB upregulated proapoptotic proteins as well as downregulated antiapoptotic and cell cycle-related proteins in SGC-7901 cells. SMAD4, TGF-ß1, and TSPAN12 proteins were tested in FKB-induced SGC-7901 cells. Following exposure to FKB, SMAD4, TGF-ß1, and TSPAN12 expression was augmented in SGC-7901 cells. si-SMAD4 transfection weakened cell apoptosis and accelerated cell proliferation. Furthermore, FKB reversed the change in apoptotic and cell cycle-related proteins induced by si-SMAD4. A nude mouse tumorigenesis model was constructed, which was treated by FKB. In the nude mouse tumorigenesis model, FKB activated the TSPAN12 expression and TGF-ß1/SMAD4 pathway. Also, FKB treatment prolonged the survival time of nude mice and lowered tumor weight. iNOS and CD86 expression was significantly enhanced, and Arg-1 and CD206 expression was significantly decreased in THP-1 cells cultured in conditioned media from FKB-treated SGC-7901 cells. Additionally, FKB-treated SGC-7901 cells weakened macrophage migration. Collectively, this evidence suggested that FKB accelerated apoptosis and suppressed the proliferation of gastric cancer cells and attenuated M2 macrophage polarization, thereby exerting an anticancer effect on gastric cancer.


Subject(s)
Apoptosis , Stomach Neoplasms , Animals , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Flavonoids , G2 Phase Cell Cycle Checkpoints , Humans , Macrophages , Mice , Mice, Nude , Smad4 Protein , Transforming Growth Factor beta1
12.
Front Med (Lausanne) ; 8: 792740, 2021.
Article in English | MEDLINE | ID: mdl-35178409

ABSTRACT

OBJECTIVE: Aging acts as a dominating risk factor for human cancers. Herein, we systematically dissected the features of transcriptional aging-relevant genes in gastric cancer from multiple perspectives. METHODS: Based on the transcriptome profiling of prognostic aging-relevant genes, patients with gastric cancer in The Cancer Genome Atlas (TCGA) stomach adenocarcinoma (TCGA-STAD) cohort were clustered with a consensus clustering algorithm. Mutational landscape and chemotherapeutic responses were analyzed and immunological features (immunomodulators, immune checkpoint molecules, cancer immunity cycle, and tumor-infiltrating immune cells) were systematically evaluated across gastric cancer. Weighted gene co-expression network (WGCNA) was conducted for screening aging molecular phenotype-relevant genes, and key genes were identified with Molecular Complex Detection (MCODE) analyses. Expressions of key genes were examined in 20 paired tumors and controls with RT-qPCR and Western blotting. Proliferation and apoptosis were investigated in two gastric cancer cells under MYL9 deficiency. RESULTS: Three aging-based molecular phenotypes (namely, C1, C2, and C3) were conducted in gastric cancer. Phenotype C1 presented the most prominent survival advantage and highest mutational frequencies. Phenotype C2 indicated low responses to sorafenib and gefitinib, while C3 indicated low responses to vinorelbine and gemcitabine. Additionally, phenotype C2 was characterized by enhanced immune and stromal activation and an inflamed tumor microenvironment. Seven aging molecular phenotype-relevant key genes (ACTA2, CALD1, LMOD1, MYH11, MYL9, MYLK, and TAGLN) were identified, which were specifically upregulated in tumors and in relation to dismal prognosis. Among them, MYL9 deficiency reduced proliferation and enhanced apoptosis in gastric cancer cells. CONCLUSION: Collectively, aging-based molecular subtypes may offer more individualized therapy recommendations and prognosis assessment for patients in distinct subtypes.

13.
AMB Express ; 4: 28, 2014.
Article in English | MEDLINE | ID: mdl-24949263

ABSTRACT

(R)-hydroxyalkanoic acids (R-HAs) are valuable building blocks for the synthesis of fine chemicals and biopolymers because of the chiral center and the two active functional groups. Hydroxyalkanoic acids fermentation can revolutionize the polyhydroxyalkanoic acids (PHA) production by increasing efficiency and enhancing product utility. Modifying the fermentation conditions that promotes the in vivo depolymerization and secretion to fermentation broth in wild type bacteria is a novel and promising approach to produce R-HAs. Wood extract hydrolysate (WEH) was found to be a suitable substrate for R-3-hydroxybutyric acid (R-3-HB) production by Burkholderia cepacia. Using Paulownia elongate WEH as a feedstock, the R-3-HB concentration in fermentation broth reached as high as 14.2 g/L after 3 days of batch fermentation and the highest concentration of 16.8 g/L was obtained at day 9. Further investigation indicated that the composition of culture medium contributed to the enhanced R-3-HB production.

14.
IEEE Trans Vis Comput Graph ; 20(8): 1189-99, 2014 Aug.
Article in English | MEDLINE | ID: mdl-26357370

ABSTRACT

We present an automatic hexahedralization tool, based on a systematic treatment that removes some of the singularities that would lead to degenerate volumetric parameterization. Such singularities could be abundant in automatically generated frame fields guiding the interior and boundary layouts of the hexahedra in an all hexahedral mesh. We first give the mathematical definitions of the inadmissible singularities prevalent in frame fields, including newly introduced surface singularity types. We then give a practical framework for adjusting singularity graphs by automatically modifying the rotational transition of frames between charts (cells of a tetrahedral mesh for the volume) to resolve the issues detected in the internal and boundary singularity graph. After applying an additional re-smoothing of the frame field with the modified transition conditions, we cut the volume into a topologically trivial domain, with the original topology encoded by the self-intersections of the boundary of the domain, and solve a mixed integer problem on this domain for a global parameterization. Finally, a properly connected hexahedral mesh is constructed from the integer isosurfaces of (u,v,w) in the parameterization. We demonstrate the applicability of the method on complex shapes, and discuss its limitations.

15.
Ying Yong Sheng Tai Xue Bao ; 13(1): 87-90, 2002 Jan.
Article in Chinese | MEDLINE | ID: mdl-11962328

ABSTRACT

Tobacco seedlings were inoculated with VA mycorrhizal fungi in natural soil. The results showed that compared with the control, the contents of nitrogen, phosphorus, potassium and chlorophyll, nitrate reductase activity, and protein in leaves were higher, malondialdehyde(MDA) and hydrogen peroxide(H2O2) decreased, while the activities of superoxide dismutase(SOD), catalase(CAT), and peroxidase(POD) increased. Meanwhile, seedlings were inoculated with two strains of ectomycorrhizal fungi respectively, and the above physiological indices trended the same changes. Moreover, the effect of strain Calvatia lilacina was higher than that of VA mycorrhizal fungi.


Subject(s)
Ecosystem , Nicotiana/physiology , Soil Microbiology , Catalase/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Peroxidase/metabolism , Plant Proteins/metabolism , Superoxide Dismutase/metabolism , Nicotiana/metabolism , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...