Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Innovation (Camb) ; 5(3): 100603, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38745762

ABSTRACT

The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.

2.
Front Public Health ; 12: 1285114, 2024.
Article in English | MEDLINE | ID: mdl-38751583

ABSTRACT

Introduction: There is a lack of research on the current level of diabetes knowledge and health information-seeking behaviors among patients with diabetes in rural areas of China's economically underdeveloped regions during COVID-19, as well as a lack of up-to-date evidence on glycemic control and the incidence of complications among rural patients with diabetes. Objectives: To investigate the prevalence of glycemic control and complications among patients with diabetes in rural areas, to explore the current status and correlation of diabetes knowledge level and health information-seeking behavior, and to analyze the factors affecting diabetes knowledge level. Methods: From January 2022 to July 2022, we conducted a screening on diabetic complications and a questionnaire survey among 2,178 patients with diabetes in 15 county hospitals in rural areas of Guangxi Zhuang Autonomous Region. The patients' knowledge level and health information-seeking behavior were investigated. Spearman correlation analysis was used to assess the correlation between diabetes knowledge and health information-seeking behavior. Multiple linear regression analysis was used to test how demographic information and health information-seeking behavior influenced the level of diabetes knowledge. Results: Of 2,178 patients with diabetes in rural areas, 1,684 (77.32%) had poor glycemic control, and the prevalence of diabetic complications was estimated to be 72.13%. Patients with diabetes had poor diabetes knowledge and health information-seeking behavior, and there is a strong positive correlation between them. Diabetes knowledge level was influenced by per capita household disposable income, occupational status, gender, age, ethnicity, family history of diabetes, insulin use, glycated hemoglobin, education level, number of complications and health information-seeking behavior. Conclusion: Patients with diabetes in rural areas have poor glycemic control and a high incidence of diabetic complications. Patients with diabetes in rural areas have poor knowledge and inadequate health information-seeking behavior. Systematic and standardized education should be provided to improve patients' diabetes knowledge and thus improve their self-management ability.


Subject(s)
Diabetes Mellitus , Health Knowledge, Attitudes, Practice , Information Seeking Behavior , Rural Population , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , China/epidemiology , Rural Population/statistics & numerical data , Adult , Diabetes Mellitus/epidemiology , Surveys and Questionnaires , Aged , COVID-19/epidemiology , Diabetes Complications
3.
Plants (Basel) ; 13(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732491

ABSTRACT

Deep learning has emerged as a powerful tool for investigating intricate biological processes in plants by harnessing the potential of large-scale data. Gene regulation is a complex process that transcription factors (TFs), cooperating with their target genes, participate in through various aspects of biological processes. Despite its significance, the study of gene regulation has primarily focused on a limited number of notable instances, leaving numerous aspects and interactions yet to be explored comprehensively. Here, we developed DEGRN (Deep learning on Expression for Gene Regulatory Network), an innovative deep learning model designed to decipher gene interactions by leveraging high-dimensional expression data obtained from bulk RNA-Seq and scRNA-Seq data in the model plant Arabidopsis. DEGRN exhibited a compared level of predictive power when applied to various datasets. Through the utilization of DEGRN, we successfully identified an extensive set of 3,053,363 high-quality interactions, encompassing 1430 TFs and 13,739 non-TF genes. Notably, DEGRN's predictive capabilities allowed us to uncover novel regulators involved in a range of complex biological processes, including development, metabolism, and stress responses. Using leaf senescence as an example, we revealed a complex network underpinning this process composed of diverse TF families, including bHLH, ERF, and MYB. We also identified a novel TF, named MAF5, whose expression showed a strong linear regression relation during the progression of senescence. The mutant maf5 showed early leaf decay compared to the wild type, indicating a potential role in the regulation of leaf senescence. This hypothesis was further supported by the expression patterns observed across four stages of leaf development, as well as transcriptomics analysis. Overall, the comprehensive coverage provided by DEGRN expands our understanding of gene regulatory networks and paves the way for further investigations into their functional implications.

4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731960

ABSTRACT

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Subject(s)
Carbon , Charcoal , Water Purification , Wood , Water Purification/methods , Charcoal/chemistry , Catalysis , Wood/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Adsorption
5.
Sci Total Environ ; 933: 173143, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735336

ABSTRACT

In a warming climate, high temperature stress greatly threatens crop yields. Maize is critical to food security, but frequent extreme heat events coincide temporally and spatially with the period of kernel number determination (e.g., flowering stage), greatly limiting maize yields. In this context, how to increase or at least maintain maize yield has become more important. Nitrogen fertilizer (N) is widely used to improve maize yields, but its effect in heat stress is unclear. For this, we collected 1536 pairs of comparisons from 113 studies concerning N conducted in the past 20 years over China. We classified the data into two groups - without high temperature stress (NHT) and with high temperature stress during the critical period for maize kernel number determination (HT) - based on the national meteorological data. We comprehensively evaluated N effects on grain yield under HT and NHT using meta-analysis. The effect of N on maize yield became significantly smaller in HT than that in NHT. In NHT, soil characteristics, crop management practices, and climatic conditions all significantly affected N effects on maize yield, but in HT, only a few factors such as soil organic matter and mean annual precipitation significantly affected N effects. Hence, it is difficult to improve N effect by improving soil characteristics and crop management when meeting with high temperature stress during flowering. On average, N effect increased with increased N input, but there were respective N input thresholds in NHT and HT, beyond which N effects on maize yield remained stable. According to the thresholds, it is speculated that moderately reducing N input (~20 %) likely increased high temperature tolerance of maize during flowering. These findings have important implications for the optimization of N management under a warming climate.


Subject(s)
Nitrogen , Zea mays , Zea mays/physiology , Zea mays/growth & development , China , Fertilizers , Hot Temperature , Heat-Shock Response/physiology , Climate Change
6.
Food Chem ; 450: 139307, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38613964

ABSTRACT

This study aimed to examine the impact of trivalent, divalent, or monovalent cations dissolving into water and being mixed with maize starch to influence its retrogradation, gelatinization, and gel characteristics. The result of the analysis using a differential scanning calorimeter showed that all cations raised the peak of gelatinization temperature of maize starch, especially Al3+ or Fe3+, while trivalent cations reduced the enthalpy. The result of the analysis using a rapid viscosity analyzer showed that trivalent cation caused lower trough viscosity, final viscosity, and pasting temperature but higher breakdown viscosity of maize starch than monovalent or divalent cations. Confocal laser scanning microscopy showed that the cation promoted the destruction of gelatinized maize starch granules, especially Zn2+, Fe3+, or Al3+. Additionally, trivalent Fe3+ or Al3+ caused higher gel strength of maize starch. Generally, the cation with higher valence changed more retrogradation, gelatinization, and gel characteristics of maize starch.


Subject(s)
Cations , Gels , Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Gels/chemistry , Cations/chemistry , Viscosity , Temperature , Gelatin/chemistry
7.
Polymers (Basel) ; 16(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611277

ABSTRACT

To investigate the relationship between structures and adsorption properties, four different morphologies of chitosan, with hydrogel (CSH), aerogel (CSA), powder (CSP), and electrospinning nanofiber (CSEN) characteristics, were employed as adsorbents for the removal of Acid Red 27. The structures and morphologies of the four chitosan adsorbents were characterized with SEM, XRD, ATR-FTIR, and BET methods. The adsorption behaviors and mechanisms of the four chitosan adsorbents were comparatively studied. All adsorption behaviors exhibited a good fit with the pseudo-second-order kinetic model (R2 > 0.99) and Langmuir isotherm model (R2 > 0.99). Comparing the adsorption rates and the maximum adsorption capacities, the order was CSH > CSA > CSP > CSEN. The maximum adsorption capacities of CSH, CSA, CSP, and CSEN were 2732.2 (4.523), 676.7 (1.119), 534.8 (0.885), and 215.5 (0.357) mg/g (mmol/g) at 20 °C, respectively. The crystallinities of CSH, CSA, CSP, and CSEN were calculated as 0.41%, 6.97%, 8.76%, and 39.77%, respectively. The crystallinity of the four chitosan adsorbents was the main factor impacting the adsorption rates and adsorption capacities, compared with the specific surface area. With the decrease in crystallinity, the adsorption rates and capacities of the four chitosan adsorbents increased gradually under the same experimental conditions. CSH with a low crystallinity and large specific surface area resulted in the highest adsorption rate and capacity.

8.
Angew Chem Int Ed Engl ; 63(18): e202316484, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38494435

ABSTRACT

Panel-based methods are commonly employed for the analysis of novel gene fusions in precision diagnostics and new drug development in cancer. However, these methods are constrained by limitations in ligation yield and the enrichment of novel gene fusions with low variant allele frequencies. In this study, we conducted a pioneering investigation into the stability of double-stranded adapter DNA, resulting in improved ligation yield and enhanced conversion efficiency. Additionally, we implemented blocker displacement amplification, achieving a remarkable 7-fold enrichment of novel gene fusions. Leveraging the pre-enrichment achieved with this approach, we successfully applied it to Nanopore sequencing, enabling ultra-fast analysis of novel gene fusions within one hour with high sensitivity. This method offers a robust and remarkably sensitive mean of analyzing novel gene fusions, promising the discovery of pivotal biomarkers that can significantly improve cancer diagnostics and the development of new therapeutic strategies.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , DNA/genetics , Sequence Analysis, DNA , Software , High-Throughput Nucleotide Sequencing/methods , Gene Fusion
9.
ACS Appl Mater Interfaces ; 16(13): 16788-16799, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520339

ABSTRACT

Smart wearables with the capability for continuous monitoring, perceiving, and understanding human tactile and motion signals, while ensuring comfort, are highly sought after for intelligent healthcare and smart life systems. However, concurrently achieving high-performance tactile sensing, long-lasting wearing comfort, and industrialized fabrication by a low-cost strategy remains a great challenge. This is primarily due to critical research gaps in novel textile structure design for seamless integration with sensing elements. Here, an all-in-one biaxial insertion knit architecture is reported to topologically integrate sensing units within double-knit loops for the fabrication of a large-scale tactile sensing textile by using low-cost industrial manufacturing routes. High sensitivity, stability, and low hysteresis of arrayed sensing units are achieved through engineering of fractal structures of hierarchically patterned piezoresistive yarns via blistering and twisting processing. The as-prepared tactile sensing textiles show desirable sensing performance and robust mechanical property, while ensuring excellent conformability, tailorability, breathability (288 mm s-1), and moisture permeability (3591 g m-2 per day) for minimizing the effect on wearing comfort. The multifunctional applications of tactile sensing textiles are demonstrated in continuously monitoring human motions, tactile interactions with the environment, and recognizing biometric gait. Moreover, we also demonstrate that machine learning-assisted sensing textiles can accurately predict body postures, which holds great promise in advancing the development of personalized healthcare robotics, prosthetics, and intelligent interaction devices.


Subject(s)
Robotics , Wearable Electronic Devices , Humans , Textiles , Motion , Touch
10.
BMC Med ; 22(1): 55, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317152

ABSTRACT

BACKGROUND: Implementation of high-risk human papillomavirus (hrHPV) screening has greatly reduced the incidence and mortality of cervical cancer. However, a triage strategy that is effective, noninvasive, and independent from the subjective interpretation of pathologists is urgently required to decrease unnecessary colposcopy referrals in hrHPV-positive women. METHODS: A total of 3251 hrHPV-positive women aged 30-82 years (median = 41 years) from International Peace Maternity and Child Health Hospital were included in the training set (n = 2116) and the validation set (n = 1135) to establish Cervical cancer Methylation (CerMe) detection. The performance of CerMe as a triage for hrHPV-positive women was evaluated. RESULTS: CerMe detection efficiently distinguished cervical intraepithelial neoplasia grade 2 or worse (CIN2 +) from cervical intraepithelial neoplasia grade 1 or normal (CIN1 -) women with excellent sensitivity of 82.4% (95% CI = 72.6 ~ 89.8%) and specificity of 91.1% (95% CI = 89.2 ~ 92.7%). Importantly, CerMe showed improved specificity (92.1% vs. 74.9%) in other 12 hrHPV type-positive women as well as superior sensitivity (80.8% vs. 61.5%) and specificity (88.9% vs. 75.3%) in HPV16/18 type-positive women compared with cytology testing. CerMe performed well in the triage of hrHPV-positive women with ASC-US (sensitivity = 74.4%, specificity = 87.5%) or LSIL cytology (sensitivity = 84.4%, specificity = 83.9%). CONCLUSIONS: PCDHGB7 hypermethylation-based CerMe detection can be used as a triage strategy for hrHPV-positive women to reduce unnecessary over-referrals. TRIAL REGISTRATION: ChiCTR2100048972. Registered on 19 July 2021.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , DNA Methylation , Early Detection of Cancer , Human papillomavirus 16 , Human papillomavirus 18 , Papillomaviridae , Papillomavirus Infections/diagnosis , Papillomavirus Infections/epidemiology , Prospective Studies , Sensitivity and Specificity , Triage , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/epidemiology , Uterine Cervical Dysplasia/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Adult , Middle Aged , Aged , Aged, 80 and over
11.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(1): 15-19, 2024 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-38384211

ABSTRACT

Different porous structures were studied through finite element analysis and then optimal porous structure was selected for the orthopedic applications. The optimal Voronoi structure was designed and fabricated using 3D printing. The mechanical properties and osseointegration ability were both investigated. The mechanical tests showed that the tensile strength, compressive strength and bending strength of Voronoi structures were obviously higher than that of the human bone, and the modulus of Voronoi structures were similar to human bone. In addition, the animal experimental results exhibited that obvious bone ingrowth was found from Month 1 to Month 6. This study provides some theoretical references for the orthopedic application of porous structures.


Subject(s)
Osseointegration , Prostheses and Implants , Animals , Humans , Porosity , Materials Testing , Printing, Three-Dimensional , Titanium/chemistry
12.
Eur J Radiol ; 172: 111348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325190

ABSTRACT

PURPOSE: To develop a deep learning (DL) model based on preoperative contrast-enhanced computed tomography (CECT) images to predict microvascular invasion (MVI) and pathological differentiation of hepatocellular carcinoma (HCC). METHODS: This retrospective study included 640 consecutive patients who underwent surgical resection and were pathologically diagnosed with HCC at two medical institutions from April 2017 to May 2022. CECT images and relevant clinical parameters were collected. All the data were divided into 368 training sets, 138 test sets and 134 validation sets. Through DL, a segmentation model was used to obtain a region of interest (ROI) of the liver, and a classification model was established to predict the pathological status of HCC. RESULTS: The liver segmentation model based on the 3D U-Network had a mean intersection over union (mIoU) score of 0.9120 and a Dice score of 0.9473. Among all the classification prediction models based on the Swin transformer, the fusion models combining image information and clinical parameters exhibited the best performance. The area under the curve (AUC) of the fusion model for predicting the MVI status was 0.941, its accuracy was 0.917, and its specificity was 0.908. The AUC values of the fusion model for predicting poorly differentiated, moderately differentiated and highly differentiated HCC based on the test set were 0.962, 0.957 and 0.996, respectively. CONCLUSION: The established DL models established can be used to noninvasively and effectively predict the MVI status and the degree of pathological differentiation of HCC, and aid in clinical diagnosis and treatment.


Subject(s)
Carcinoma, Hepatocellular , Deep Learning , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Neoplasm Invasiveness/diagnostic imaging
13.
Biomicrofluidics ; 18(1): 014104, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38343650

ABSTRACT

Point-of-care (POC) diagnostic devices have been developing rapidly in recent years, but they are mainly using saliva instead of blood as a test sample. A highly efficient self-separation during the self-driven flow without power systems is desired for expanding the point-of-care diagnostic devices. Microfiltration stands out as a promising technique for blood plasma separation but faces limitations due to blood cell clogging, resulting in reduced separation speed and efficiency. These limitations are mainly caused by the high viscosity and hematocrit in the blood flow. A small increment in the hematocrit of the blood significantly increases the pressure needed for the blood plasma separation in the micro-filters and decreases the separation speed and efficiency. Addressing this challenge, this study explores the feasibility of diluting whole blood within a microfluidic device without external power systems. This study implemented a spiral microchannel utilizing the inertial focusing and Dean vortex effects to focus the red blood cells and extract the blood with lower hematocrit. The inertial migration of the particles during the capillary flow was first investigated experimentally; a maximum of 88% of the particles migrated to the bottom and top equilibrium positions in the optimized 350 × 60 µm (cross-sectional area, 5.8 aspect ratio) microchannel. With the optimized dimension of the microchannel, the whole blood samples within the physiological hematocrit range were tested in the experiments, and more than 10% of the hematocrit reduction was compared between the outer branch outlet and inner branch outlet in the 350 × 60 µm microchannel.

14.
Poult Sci ; 103(3): 103424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330682

ABSTRACT

Feather is an important economic trait of poultry, and growth and development state of feathers plays an important role in the economic value of poultry. Dermal fibroblasts are required for structural integrity of the skin and for feather follicle development. How FOXO3 affects feather follicle development as skin tissues change during goose embryo (Anser cygnoides) development and growth is not well understood. Here, we demonstrate that in vitro culture of single feathers and skin tissue results in changes in feather morphological structure by adding drugs to the culture medium that affect FOXO3 expression. We used feather follicles to show that during growth, the root location of feathers, the dermis layer, affects cell proliferation and apoptosis and regulates the expression of major genes in the Wingless-types/beta-catenin (Wnt/ß-catenin) signaling pathway through the activity of FOXO3 in dermal fibroblasts. Feathers and dorsal skin tissues develop the correct structure, but feather length and width and feather follicle diameter change significantly (p < 0.05) without significant changes in feather follicle density (p > 0.05). Transfected dermal fibroblasts also showed that FOXO3 affected the formation and development of feather follicles in the embryonic stage by regulating the Wnt/ß-catenin signaling pathway. Therefore, this study reveals the critical role of dermal fibroblast-FOXO3-induced Wnt/ß-catenin signaling in promoting the formation and development of embryonic feather follicles.


Subject(s)
Feathers , Geese , Animals , Wnt Signaling Pathway , beta Catenin/genetics , Chickens
15.
Ecotoxicol Environ Saf ; 272: 116036, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38325271

ABSTRACT

Microplastics (MPs) weather after entering the environment gradually, and the interaction with metal ions in the aqueous environment has received extensive attention. However, there are few studies on Hg(Ⅱ), especially the effect of MPs on the release of Hg0(DEM) in water after entering the aqueous environment. In this study, four types of MPs (PP, PE, PET, PVC) were selected to study the adsorption and desorption behavior of Hg(Ⅱ) after photoaging and to explore the influence of MPs on the release of DEM in seawater under different lighting conditions. The results showed that the specific surface area, negative charges, and oxygen-containing functional group of MPs increased after aging. The adsorption capacity of aged MPs for Hg(Ⅱ) was significantly improved, which was consistent with the pseudo-first-order and pseudo-second-order model, indicating that the adsorption process was a chemical and physical adsorption. The fitting results of the in-particle diffusion model indicated that the adsorption was controlled by multiple steps. Hg(Ⅱ) was easier to desorb in the simulated gastric fluid environment. Because the aged MPs had the stronger binding force to Hg(Ⅱ), their desorption rate is lower than new MPs. Under visible light and UVA irradiation, MPs inhibited the release of Hg0. Under UVA, the mass of DEM produced in seawater with aged PE and PVC was higher than that of new PE and PVC. The aged PE and PVC could produce more ·O2-, which was conducive to the reduction of mercury. However, in UVB irradiation, the addition of MPs promoted the release of DEM, and ·O2- also played an important contribution in affecting the photochemical reaction of mercury. Therefore, the presence of aged MPs will significantly affect the water-air exchange of Hg in water. Compared with new MPs, aged MPs improved the contribution of free radicals in Hg transformation by releasing reactive oxygen species. This study extends the understanding of the effects of MPs on the geochemical cycle of Hg(Ⅱ) in seawater, better assesses the potential combined ecological risks of MPs and Hg(Ⅱ), and provides certain guidance for the pollution prevention and control of MPs.


Subject(s)
Mercury , Water Pollutants, Chemical , Microplastics , Plastics , Adsorption , Seawater , Elements , Water , Water Pollutants, Chemical/analysis
16.
Adv Sci (Weinh) ; 11(15): e2304203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342610

ABSTRACT

Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.


Subject(s)
AMP-Activated Protein Kinases , Endometrial Neoplasms , HSP70 Heat-Shock Proteins , Membrane Proteins , Female , Humans , AMP-Activated Protein Kinases/metabolism , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Mitochondria/metabolism
17.
BMC Anesthesiol ; 24(1): 13, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172775

ABSTRACT

BACKGROUND: The primary purpose of this study was to investigate the predictive value of alterations in cervical artery hemodynamic parameters induced by a simulated end-inspiratory occlusion test (sEIOT) measured by ultrasound for predicting postinduction hypotension (PIH) during general anesthesia. METHODS: Patients undergoing gastrointestinal tumor resection under general anesthesia were selected for this study. Ultrasound has been utilized to assess hemodynamic parameters in carotid artery blood flow before induction, specifically focusing on variations in corrected flow time (ΔFTc) and peak blood flow velocity (ΔCDPV), both before and after sEIOT. Anesthesia was induced by midazolam, sufentanil, propofol, and rocuronium, and blood pressure (BP) and heart rate (HR) were recorded within the first 10 min following endotracheal intubation. PIH was defined as fall in systolic blood pressure (SBP) or mean arterial pressure (MAP) by > 30% of baseline or MAP to < 60 mm Hg. RESULTS: The area under the receiver operating characteristic curves (AUC) for carotid artery ΔFTc was 0.88 (95%CI, 0.81 to 0.96; P < 0.001), and the optimal cutoff value was -16.57%, with a sensitivity of 91.4% and specificity of 77.60%. The gray zone for carotid artery ΔFTc was -16.34% to -15.36% and included 14% of the patients. The AUC for ΔCDPV was 0.54, with an optimal cutoff value of -1.47%. The sensitivity and specificity were calculated as 55.20% and 57.10%, respectively. CONCLUSION: The corrected blood flow time changes in the carotid artery induced by sEIOT can predict hypotension following general anesthesia-induced hypotension, wherein ΔFTc less than 16.57% is the threshold. TRIAL REGISTRATION: Chinese Clinical Trial Registry ( www.chictr.org.cn ; 20/06/2023; ChiCTR2300072632).


Subject(s)
Hypotension , Humans , Hypotension/diagnostic imaging , Hypotension/etiology , Hemodynamics , Blood Pressure/physiology , Anesthesia, General/adverse effects , Carotid Arteries
19.
Int J Pharm ; 652: 123802, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38218508

ABSTRACT

Adjuvants are necessary for protein vaccines and have been used for nearly 100 years. However, developing safe and effective adjuvants is still urgently needed. Polysaccharides isolated from traditional Chinese medicine are considered novel vaccine adjuvant sources. This study aimed to investigate the adjuvant activity and immune-enhancing mechanisms of the microparticulated Polygonatum sibiricum polysaccharide (MP-PSP) modified by calcium carbonate. PSP demonstrated adjuvant activity, and MP-PSP further showed a higher humoral response compared to PSP. Subsequently, MP-PSP was elucidated to improving the immunity by slowing the rate of antigen release and activating dendritic cells along with interleukin-6 secretion through toll-like receptor 4 signaling, followed by T follicular helper cell and B cell interactions. Moreover, MP-PSP had a good safety profile in vaccinated mice. Thus, MP-PSP may be a promising vaccine adjuvant and warrants further investigation.


Subject(s)
Adjuvants, Vaccine , Polygonatum , Mice , Animals , Signal Transduction , Adjuvants, Immunologic/pharmacology , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...