Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37242060

ABSTRACT

This study details microwave-absorbing materials made of natural rubber/nitrile butadiene rubber (NR/NBR) blends with multi-walled carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS2). The mechanical blending method and the influences of fabrication on the morphology and microwave-absorbing performance of resulting compounds were logically investigated. It was found that interfacial differences between the fillers and matrix promote the formation of MWCNTs and MoS2 networks in NR/NBR blends, thus improving microwave-absorbing performance. Compared with direct compounding, masterbatch-based two-step blending is more conducive to forming interpenetrating networks of MWCNTs/MoS2, endowing the resulting composite with better microwave attenuation capacity. Composites with MWCNTs in NR and MoS2 in NBR demonstrate the best microwave-absorbing performance, with a minimum reflection loss of -44.54 dB and an effective absorption bandwidth of 3.60 GHz. Exploring the relationship between morphology and electromagnetic loss behavior denotes that such improvement results from the selective distribution of dual fillers, inducing networking and multi-component-derived interfacial polarization enhancement.

2.
Int J Biol Macromol ; 223(Pt A): 446-457, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36368356

ABSTRACT

Most of the dynamic covalent bonds (DCBs) for self-healing rubber must be activated at relatively high temperatures due to the requirement of high energy during the exchange of dynamic bonds, which may lead to unexpected degradation or excessive crosslinking of rubber. Herein, we designed and fabricated a highly stretchable, self-healable and reprocessable rubber by introducing dynamic disulfide bonds into the crosslink network of epoxidized natural rubber (ENR). Lipoic acid (LA) was firstly uniformly dispersed into ENR via a latex film formation technique, and then underwent a dynamic covalent ring-opening self-polymerization during hot pressing process, during which the carboxyl group of poly(LA) attacked the epoxy group of ENR to form ß-hydroxyl ester bond crosslinks. As a result, a revisable covalently crosslinked network without rigid steric hindrance groups was constructed, which exhibited a super self-healing efficiency of 99 % after self-healing at 80 °C for only 3 h. The elongation at break of the elastomer could reach 1115 % and the recovery rate of reprocessing was as high as 91 %.


Subject(s)
Rubber , Thioctic Acid , Rubber/chemistry , Elastomers/chemistry , Temperature , Latex
3.
Polymers (Basel) ; 12(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266328

ABSTRACT

Though the non-rubber components have long been recognized to be a vital factor affecting the network of natural rubber (NR), the authentic role of non-rubber components on the network during accelerated storage has not been fully illuminated. This work attempts to clarify the impact of non-rubber components on the network for NR during accelerated storage. A natural network model for NR was proposed based on the gel content, crosslinking density, and the non-rubber components distribution for NR before and after centrifugation. Furthermore, the effect of non-rubber components on the network was investigated during accelerated storage. The results show that terminal crosslinking induced by non-rubber components and entanglements are primary factors affecting the network formation during accelerated storage. By applying the tube model to analyze the stress-strain curves of NR, we found that the contribution of the entanglements to the network formation is larger than that of terminal crosslinking during accelerated storage. The work highlights the role of non-rubber components on the network during accelerated storage, which is essential for understanding the storage hardening mechanism of NR.

SELECTION OF CITATIONS
SEARCH DETAIL
...