Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Viruses ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36992382

ABSTRACT

Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Anti-Bacterial Agents
2.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901793

ABSTRACT

Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.


Subject(s)
Bacteriophages , Phage Therapy , Bacteriophages/genetics , Bacteria/genetics , CRISPR-Cas Systems , Mutation
3.
Front Microbiol ; 14: 1329330, 2023.
Article in English | MEDLINE | ID: mdl-38348304

ABSTRACT

Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens. NGS is a cutting-edge sequencing method with high throughput that can create massive volumes of sequences with a broad application prospects in the field of pathogen identification and diagnosis. In this review, we introduce NGS technology in detail, summarizes the application of NGS in that identification of different pathogens, including bacteria, fungi, and viruses, and analyze the challenges and outlook for using NGS to identify clinical pathogens. Thus, this work provides a theoretical basis for NGS studies and provides evidence to support the application of NGS in distinguishing various clinical pathogens.

4.
Curr Opin Plant Biol ; 67: 102219, 2022 06.
Article in English | MEDLINE | ID: mdl-35550985

ABSTRACT

The shikimate pathway connects the central carbon metabolism with the biosynthesis of aromatic amino acids-l-tyrosine, l-phenylalanine, and l-tryptophan-which play indispensable roles as precursors of numerous aromatic phytochemicals. Despite the importance of the shikimate pathway-derived products for both plant physiology and human society, the regulatory mechanism of the shikimate pathway remains elusive. This review summarizes the recent progress and current understanding on the plant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase or DHS) enzymes that catalyze the committed reaction of the shikimate pathway. We particularly focus on how the DHS activity is regulated in plants in comparison to those of microbes and discuss potential roles of DHS as the critical gatekeeper for the production of plant aromatic compounds.


Subject(s)
Biological Products , Phosphates , 3-Deoxy-7-Phosphoheptulonate Synthase/chemistry , 3-Deoxy-7-Phosphoheptulonate Synthase/genetics , 3-Deoxy-7-Phosphoheptulonate Synthase/metabolism , Phenylalanine/chemistry , Phenylalanine/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...