Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
Opt Lett ; 49(11): 3078-3081, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824332

ABSTRACT

Diode lasers with high beam quality and high power have many promising applications. However, high beam quality is always in conflict with high power. In this Letter, we theoretically and experimentally confirm the mode instability property of supersymmetric structures at higher operating currents. Meanwhile, we propose a loss-tailoring diode laser based on a supersymmetric structure, which enables the higher-order lateral modes to obtain higher losses, raises the excitation threshold of the higher-order lateral modes, and achieves a stable fundamental-lateral-mode output at higher current operation. The device obtained a quasi-single-lobe lateral far-field distribution with the full width at half maximum (FWHM) of 7.58° at 350 mA under room temperature, which is a 65% reduction compared to the traditional Fabry-Perot (FP) diode lasers. Moreover, the M2 of 2.181@350 mA has an improvement of about 37% over traditional FP and supersymmetric structure lasers.

2.
Article in English | MEDLINE | ID: mdl-38841745

ABSTRACT

Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.

3.
J Am Chem Soc ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837248

ABSTRACT

Electrochemiluminescence (ECL) involves charge transfer between electrochemical redox intermediates to produce an excited state for light emission. Ensuring precise control of charge transfer is essential for decoding ECL fundamentals, yet guidelines on how to achieve this for conventional emitters remain unexplored. Molecular ratchets offer a potential solution, as they enable the directional transfer of energy or chemicals while impeding the reverse movement. Herein, we designed 10 pairs of imine-based covalent organic frameworks as reticular ratchets to delicately manipulate the intrareticular charge transfer for directing ECL transduction from electric and chemical energies. Aligning the donor and acceptor (D-A) directions with the imine dipole effectively facilitates charge migration, whereas reversing the D-A direction impedes it. Notably, the ratchet effect of charge transfer directionality intensified with increasing D-A contrast, resulting in a remarkable 680-fold improvement in the ECL efficiency. Furthermore, dipole-controlled exciton binding energy, electron/hole decay kinetics, and femtosecond transient absorption spectra identified the electron transfer tendency from the N-end toward the C-end of reticular ratchets during ECL transduction. An exponential correlation between the ECL efficiency and the dipole difference was discovered. Our work provides a general approach to manipulate charge transfer and design next-generation electrochemical devices.

4.
Sci Rep ; 14(1): 12709, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830938

ABSTRACT

To assess the efficacy of stent grafts (SGs) in managing central venous obstruction disease (CVOD) in hemodialysis (HD) patients with arteriovenous (AV) access, and to identify predictive factors influencing the SG treatment outcomes. HD subjects with CVOD who underwent SGs placement at our center between August 2018 and June 2022 were enrolled. Survival curve analysis using the Kaplan-Meier method and log-rank test was performed. Cox proportional hazards regression analysis was employed to identify predictive factors associated with outcomes. A total of 59 SG implantation procedures for CVOD were analyzed, comprising 30 cases of stenosis and 29 cases of occlusion. The access circuit primary patency (ACPP) at 6, 12, and 24 months post-SG placement were 80.9%, 53.8%, and 31.4%, respectively, while, the target lesion primary patency (TLPP) were 91.3%, 67.6%, and 44.5%, respectively. Subgroup analysis revealed higher TLPP in the stenosis group compared to the occlusion group, although the difference was not statistically significant (P = 0.165). The TLPP was significantly improved by SG placement in those who had antecedent balloon dilations (P < 0.001). Cox proportional hazards regression identified target lesion length ≥ 30 mm and procedure defects as independent predictors of lower TLPP after SG treatment for CVOD in HD patients. SG placement demonstrates safety and efficacy in managing CVOD among HD patients, leading to improved TLPP of endovascular therapy (EVT) for CVOD. Notably, long target lesions (≥ 30 mm) and procedure defects emerged as predictive factors influencing TLPP.


Subject(s)
Kidney Failure, Chronic , Renal Dialysis , Stents , Vascular Patency , Humans , Male , Female , Middle Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Aged , Treatment Outcome , Retrospective Studies , Arteriovenous Shunt, Surgical/adverse effects , Constriction, Pathologic/surgery , Adult , Kaplan-Meier Estimate , Proportional Hazards Models , Graft Occlusion, Vascular/etiology
5.
Eur J Med Chem ; 274: 116533, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38838548

ABSTRACT

Antiestrogen/histone deacetylase inhibitor (HDACi) hybrids were designed by merging structures of raloxifene with suberoylanilide hydroxamic acid, incorporating the HDACi unit into the phenolic ring of the antiestrogen. These hybrids were synthesized with a range of HDACi chain lengths and assessed for bifunctionality. Four hybrids, 21 (YW471), 22 (YW490), 27(YW486), and 28 (YW487) showed good potency both as antiestrogens in a BRET assay and in a fluorometric HDACi assay. The antiproliferative activity of the hybrids was demonstrated in both ER+ MCF7 and ER- MDA-MB-231 breast cancer cell lines.

6.
Nat Commun ; 15(1): 3913, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724558

ABSTRACT

Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.

7.
Transl Cancer Res ; 13(4): 1685-1694, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38737698

ABSTRACT

Background: The causal link between kidney cancer and omega-3/6 (ω-3/6) fatty acids is yet to be clearly established. Therefore, the objective of our study was to investigate these potential causal relationships. Methods: We conducted a two-sample Mendelian randomization (MR) analysis to investigate the possible causal association between ω-3/6 fatty acids and kidney cancer. We utilized the random effect inverse variance weighted (IVW) method as our primary analytical approach for the two-sample MR analysis. In addition, sensitivity analyses such as heterogeneity tests, pleiotropy analyses, and leave-one-out analyses were performed to assess the robustness of the MR analysis results. Results: The IVW method showed statistically significant associations between ω-3 and ω-6 fatty acids and increased risk of kidney cancer. The result for ω-3 and ω-6 were [odds ratio (OR) =1.27; 95% confidence interval (CI): 1.04-1.55; P=0.02] and (OR =1.56; 95% CI: 1.17-2.09; P=0.003), respectively. Moreover, in the results of sensitivity analyses, no apparent horizontal gene pleiotropy nor heterogeneity was observed. After performing "the leave-one-out" sensitivity analysis of the data one by one, no single nucleotide polymorphisms (SNPs) sites in each instrumental variable (IV) were found to have greatly affected the disease outcome. Conclusions: Elevated serum ω-3/6 fatty acids levels are causally associated with an increased risk of kidney cancer. Therefore, it is crucial to monitor dietary intake and properly intervene to lower these levels in those at risk of kidney cancer.

8.
Sci Total Environ ; 931: 172904, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703845

ABSTRACT

Enhanced nitrogen (N) input is expected to influence the soil phosphorus (P) cycling through biotic and abiotic factors. Among these factors, soil microorganisms play a vital role in regulating soil P availability. However, the divergent contribution of functional microorganisms to soil P availability in the rhizosphere and bulk soil under N addition remains unclear. We conducted an N addition experiment with four N input rates (0, 5, 10, and 15 g N m-2 year-1) in an alpine meadow over three years. Metagenomics was employed to investigate the functional microbial traits in the rhizosphere and bulk soil. We showed that N addition had positive effects on microbial functional traits related to P-cycling in the bulk and rhizosphere soil. Specifically, high N addition significantly increased the abundance of most microbial genes in the bulk soil but only enhanced the abundance of five genes in the rhizosphere soil. The soil compartment, rather than the N addition treatment, was the dominant factor explaining the changes in the diversity and network of functional microorganisms. Furthermore, the abundance of functional microbial genes had a profound effect on soil available P, particularly in bulk soil P availability driven by the ppa and ppx genes, as well as rhizosphere soil P availability driven by the ugpE gene. Our results highlight that N addition stimulates the microbial potential for soil P mobilization in alpine meadows. Distinct microbial genes play vital roles in soil P availability in bulk and rhizosphere soil respectively. This indicates the necessity for models to further our knowledge of P mobilization processes from the bulk soil to the rhizosphere soil, allowing for more precise predictions of the effects of N enrichment on soil P cycling.


Subject(s)
Grassland , Nitrogen , Phosphorus , Rhizosphere , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , Soil/chemistry , Microbiota
9.
Chin Med J (Engl) ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738689

ABSTRACT

ABSTRACT: In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.

10.
Sci Rep ; 14(1): 12228, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806610

ABSTRACT

DNA topoisomerase II alpha (TOP2A) expression, gene alterations, and enzyme activity have been studied in various malignant tumors. Abnormal elevation of TOP2A expression is considered to be related to the development of non-small cell lung cancer (NSCLC). However, its association with tumor metastasis and its mode of action remains unclear. Bioinformatics, real-time quantitative PCR, immunohistochemistry and immunoblotting were used to detect TOP2A expression in NSCLC tissues and cells. Cell migration and invasion assays as well as cytoskeletal staining were performed to analyze the effects of TOP2A on the motility, migration and invasion ability of NSCLC cells. Cell cycle and apoptosis assays were used to verify the effects of TOP2A on apoptosis as well as cycle distribution in NSCLC. TOP2A expression was considerably upregulated in NSCLC and significantly correlated with tumor metastasis and the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC. Additionally, by interacting with the classical ligand Wnt3a, TOP2A may trigger the canonical Wnt signaling pathway in NSCLC. These observations suggest that TOP2A promotes EMT in NSCLC by activating the Wnt/ß-catenin signaling pathway and positively regulates malignant events in NSCLC, in addition to its significant association with tumor metastasis. TOP2A promotes the metastasis of NSCLC by stimulating the canonical Wnt signaling pathway and inducing EMT. This study further elucidates the mechanism of action of TOP2A, suggesting that it might be a potential therapeutic target for anti-metastatic therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , DNA Topoisomerases, Type II , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Poly-ADP-Ribose Binding Proteins , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/genetics , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Cell Movement/genetics , Cell Line, Tumor , Neoplasm Metastasis , Wnt Signaling Pathway , Apoptosis , Male , Female , Middle Aged , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
11.
Small ; : e2401307, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801308

ABSTRACT

With the guidance of density functional theory (DFT), a high-performance hafnium (Hf) cathode for an air/water vapor plasma torch is designed and the concepts and principles for high performance are elucidated. A quasi-nanocrystalline hexagonal close-packed (HCP) Hf-La2O3 cathode based on these design principles is successfully fabricated via a powder metallurgy route. Under identical voltage and temperature conditions, the thermal emission current density of this quasi-nanocrystalline Hf-La2O3 cathode is ≈20 times greater than that of conventional Hf cathodes. Additionally, its cathodic lifespan is significantly extended. Quasi-nanocrystalline Hf-La2O3 products are manufactured into cathode devices with standard dimensions. This fabrication process is straightforward, requires minimal doped oxides, and is cost-effective. Consequently, the approach offers substantial performance enhancements over traditional Hf melting methods without incurring significantly additional costs.

12.
Acta Pharmacol Sin ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760543

ABSTRACT

Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.

13.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793551

ABSTRACT

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Subject(s)
Epstein-Barr Virus Infections , HLA-A2 Antigen , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Peptides , Humans , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/genetics , Peptides/immunology , Peptides/chemistry , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/virology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Proteomics/methods , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/virology , China , Tandem Mass Spectrometry , Epitopes, T-Lymphocyte/immunology , Cell Line, Tumor
14.
Vet Microbiol ; 294: 110108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729093

ABSTRACT

H7N9 subtype avian influenza virus (AIV) poses a great challenge to poultry industry. Virus-like particle (VLP) is a prospective alternative for the traditional egg-based influenza vaccines. N-linked glycosylation (NLG) regulates the efficacy of influenza vaccines, whereas the impact of NLG modifications on the efficacy of influenza VLP vaccines remains unclear. Here, H7N9 VLPs were assembled in insect cells through co-infection with the baculoviruses expressing the NLG-modified hemagglutinin (HA), neuraminidase and matrix proteins, and the VLP vaccines were assessed in chickens and mice. NLG modifications significantly enhanced hemagglutination-inhibition and virus neutralization antibody responses in mice, rather than in chickens, because different immunization strategies were used in these animal models. The presence of dual NLG at residues 133 and 158 significantly elevated HA-binding IgG titers in chickens and mice. The VLP vaccines conferred complete protection and significantly suppressed virus replication and lung pathology post challenge with H7N9 viruses in chickens and mice. VLP immunization activated T cell immunity-related cytokine response and inhibited inflammatory cytokine response in mouse lung. Of note, the presence of dual NLG at residues 133 and 158 optimized the capacity of the VLP vaccine to stimulate interleukin-4 expression, inhibit virus shedding or alleviate lung pathology in chickens or mice. Intriguingly, the VLP vaccine with NLG addition at residue 133 provided partial cross-protection against the H5Nx subtype AIVs in chickens and mice. In conclusion, dual NLG at residues 133 and 158 in HA can be potentially used to enhance the efficacy of H7N9 VLP vaccines in chickens and mammals.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza in Birds , Mice, Inbred BALB C , Vaccines, Virus-Like Particle , Animals , Chickens/immunology , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Influenza A Virus, H7N9 Subtype/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Glycosylation , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Influenza in Birds/virology , Antibodies, Viral/blood , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Female , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cytokines , Poultry Diseases/prevention & control , Poultry Diseases/virology , Poultry Diseases/immunology
15.
Toxicol Appl Pharmacol ; 487: 116957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735590

ABSTRACT

Heart failure is associated with histone deacetylase (HDAC) regulation of gene expression, the inhibition of which is thought to be beneficial for heart failure therapy. Here, we explored the cardioprotective effects and underlying mechanism of a novel selenium-containing HDAC inhibitor, Se-SAHA, on isoproterenol (ISO)-induced heart failure. We found that pretreatment with Se-SAHA attenuated ISO-induced cardiac hypertrophy and fibrosis in neonatal rat ventricular myocytes (NRVMs). Se-SAHA significantly attenuated the generation of ISO-induced reactive oxygen species (ROS) and restored the expression levels of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) in vitro. Furthermore, Se-SAHA pretreatment prevented the accumulation of autophagosomes. Se-SAHA reversed the high expression of HDAC1 and HDAC6 induced by ISO incubation. However, after the addition of the HDAC agonist, the effect of Se-SAHA on blocking autophagy was inhibited. Using ISO-induced mouse models, cardiac ventricular contractile dysfunction, hypertrophy, and fibrosis was reduced treated by Se-SAHA. In addition, Se-SAHA inhibited HDAC1 and HDAC6 overexpression in ISO-treated mice. Se-SAHA treatment significantly increased the activity of SOD2 and improved the ability to eliminate free radicals. Se-SAHA hindered the excessive levels of the microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 in heart failure mice. Collectively, our results indicate that Se-SAHA exerts cardio-protection against ISO-induced heart failure via antioxidative stress and autophagy inhibition.


Subject(s)
Autophagy , Heart Failure , Histone Deacetylase Inhibitors , Isoproterenol , Mice, Inbred C57BL , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Animals , Isoproterenol/toxicity , Heart Failure/chemically induced , Heart Failure/prevention & control , Heart Failure/pathology , Heart Failure/drug therapy , Autophagy/drug effects , Histone Deacetylase Inhibitors/pharmacology , Oxidative Stress/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Male , Rats , Mice , Superoxide Dismutase/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Fibrosis , Cells, Cultured , Cardiomegaly/chemically induced , Cardiomegaly/prevention & control , Cardiomegaly/pathology
16.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659905

ABSTRACT

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

17.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589688

ABSTRACT

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.

18.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608448

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Subject(s)
Cell Nucleus , Cytoplasm , ELAV-Like Protein 1 , Interleukin-1beta , Interleukin-8 , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cytoplasm/metabolism , Cell Nucleus/metabolism , Cell Line, Tumor , Cyclic S-Oxides/pharmacology , Protein Transport , Signal Transduction , Active Transport, Cell Nucleus , CRISPR-Cas Systems
19.
Biomacromolecules ; 25(5): 2701-2714, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38608139

ABSTRACT

Over decades of development, while phosphoramidite chemistry has been known as the leading method in commercial synthesis of oligonucleotides, it has also revolutionized the fabrication of sequence-defined polymers (SDPs), offering novel functional materials in polymer science and clinical medicine. This review has introduced the evolution of phosphoramidite chemistry, emphasizing its development from the synthesis of oligonucleotides to the creation of universal SDPs, which have unlocked the potential for designing programmable smart biomaterials with applications in diverse areas including data storage, regenerative medicine and drug delivery. The key methodologies, functions, biomedical applications, and future challenges in SDPs, have also been summarized in this review, underscoring the significance of breakthroughs in precisely synthesized materials.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Oligonucleotides , Organophosphorus Compounds , Polymers , Regenerative Medicine , Regenerative Medicine/methods , Biocompatible Materials/chemistry , Polymers/chemistry , Drug Delivery Systems/methods , Humans , Oligonucleotides/chemistry , Organophosphorus Compounds/chemistry , Animals
20.
Front Psychiatry ; 15: 1342398, 2024.
Article in English | MEDLINE | ID: mdl-38686127

ABSTRACT

Alexithymia is common among patients with generalized anxiety disorder (GAD) and may negatively affect the efficacy of treatment. This case report described a sole short-term psychotherapy focusing on alexithymia for a GAD patient. The intervention extends over 3 weekly 50-minute sessions and incorporates components of: (a) understanding the basic categories of emotions and the importance of processing them consciously and building one's own vocabulary of emotions; (b) developing skills in identifying and labeling emotions and learning to register both positive and negative emotions in daily life; (c) observing and interpreting emotion-related body sensations and learning to get in touch with, be empathetic to, and take care of one's own inner feelings in daily life. The Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety Rating Scale (HAMA), and Toronto Alexithymia Scale (TAS) were used to evaluate depression, anxiety, and alexithymia before and after the sessions. The results suggested that the treatment was not only effective in reducing alexithymia helping the patient to clarify, identify and describe her feelings, but also effective in reducing anxiety and depression.

SELECTION OF CITATIONS
SEARCH DETAIL
...