Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576478

ABSTRACT

The upper bound theorem is used in conjunction with Hill's quadratic yield criterion for determining the force required to upset a solid cylinder. The kinematically admissible velocity field accounts for the singular behavior of the real velocity field in the vicinity of the friction surface if the maximum friction law is adopted. The regime of sticking is also taken into consideration. The effect of this regime on the upper bound limit load is revealed. In particular, the kinematically admissible velocity field that includes the regime of sticking may result in a lower upper bound than that with no sticking. The boundary value problem is classified by a great number of geometric and material parameters. Therefore, a systematic parametric analysis of the effect of these parameters on the compression force is practically impossible. An advantage of the solution found is that it provides a quick estimate of this force for any given set of parameters.

2.
Materials (Basel) ; 12(3)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717211

ABSTRACT

An efficient analytical/numerical method has been developed and programmed to predict the distribution of residual stresses and springback in plane strain pure bending of functionally graded sheets at large strain, followed by unloading. The solution is facilitated by using a Lagrangian coordinate system. The study is concentrated on a power law through thickness distribution of material properties. However, the general method can be used in conjunction with any other through thickness distributions assuming that plastic yielding initiates at one of the surfaces of the sheet. Effects of material properties on the distribution of residual stresses are investigated.

3.
Entropy (Basel) ; 21(4)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-33267145

ABSTRACT

High-entropy alloy (HEA) offers great flexibility in materials design with 3-5 principal elements and a range of unique advantages such as good microstructure stability, mechanical strength over a broad range of temperatures and corrosion resistance, etc. Welding of high entropy alloy, as a key joining method, is an important emerging area with significant potential impact to future application-oriented research and technological developments in HEAs. The selection of feasible welding processes with optimized parameters is essential to enhance the applications of HEAs. However, the structure of the welded joints varies with material systems, welding methods and parameters. A systemic understanding of the structures and properties of the weldment is directly relevant to the application of HEAs as well as managing the effect of welding on situations such as corrosion that are known to be a service life limiting factor of welded structures in conditions such as marine environments. In this paper, key recent work on welding of HEAs is reviewed in detail focusing on the research of main HEA systems when applying different welding techniques. The experimental details including sample preparation, sample size (thickness) and welding conditions reflecting energy input are summarized and key issues are highlighted. The microstructures and properties of different welding zones, in particular the fusion zone (FZ) and the heat affected zones (HAZ), formed with different welding methods are compared and presented in details and the structure-property relationships are discussed. The work shows that the weldability of HEAs varies with the HEA composition groups and the welding method employed. Arc and laser welding of AlCoCrFeNi HEAs results in lower hardness in the FZ and HAZ and reduced overall strength. Friction stir welding results in higher hardness in the FZ and achieves comparable/higher strength of the welded joints in tensile tests. The welded HEAs are capable of maintaining a reasonable proportion of the ductility. The key structure changes including element distribution, the volume fraction of face centered cubic (FCC) and body centered cubic (BCC) phase as well as reported changes in the lattice constants are summarized and analyzed. Detailed mechanisms governing the mechanical properties including the grain size-property/hardness relationship in the form of Hall-Petch (H-P) effect for both bulk and welded structure of HEAs are compared. Finally, future challenges and main areas to research are highlighted.

4.
J Acoust Soc Am ; 129(4): 1890-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21476645

ABSTRACT

Resonant ultrasound spectroscopy (RUS) can nondestructively obtain the elastic constants of compact specimens, however many materials have hollow cross-sections and frequency analysis of such geometries is required before inclusion in the RUS methodology. Resonant mode shapes of tubes with length equal to diameter and varying ratios of tube inner to outer diameter (Λ) as well as Poisson's ratio (ν) were identified by eigenvalue analysis using a commercial finite element code. Longitudinal and shear RUS experiments were conducted on tubes with Λ varying between 0 and 0.95 and compared to the numerical results. Simulations predict that the fundamental mode transitions from pure torsion to symmetric or antisymmetric ring bending at Λ = 0.3. The frequency of the first torsion mode is invariant to Λ and unequivocal identification of this mode is obscured by overlap of bending harmonics as Λ approaches 0.95. In the context of rapid calculation of isotropic elastic constants, shear moduli were calculated from the first torsional mode and Poisson's ratio was inferred from the Demarest maps of the mode structure's dependence upon Poisson's ratio. An average shear modulus of 27.5 + 1.5 ∕ -0.6 GPa, about 5% larger than literature values for 6061 aluminum, and ν of 0.33 were inferred. Errors are attributed to tube aspect ratios slightly greater than 1 and weak material anisotropy. Existing analytical solutions for ring bending modes derived from shell approximations and for infinitely long tubes under plane strain assumptions do not adequately describe the fundamental modes for short tubes. The shear modulus can be calculated for all Λ using the existing analytical solution.


Subject(s)
Models, Theoretical , Sound Spectrography/instrumentation , Sound Spectrography/methods , Ultrasonics/instrumentation , Ultrasonics/methods , Aluminum , Elasticity , Materials Testing , Nanotubes , Plant Stems , Poaceae , Stainless Steel , Uncertainty , Vibration
5.
Biopolymers ; 86(3): 231-9, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17377963

ABSTRACT

Motivated by recent experimental work on Leu-Enkephalin modification with (4-Carboxamido)phenylalanine (Cpa), we perform MD simulations to study the structure-activity relationships of the [Cpa(1), Leu(5)]-enkephalin (Cpa-LE) for better understandings of the binding affinity in delta-selective opioid ligands. Recently, Tyr(1) substituted into Cpa(1) form was experimentally found to be the first example of an amino acid that acts as a surrogate for Tyr(1) in opioid peptide ligands, which challenges a long-standing belief that a phenolic residue is required for high affinity binding. Our simulations show the Cpa-LE structure in aqueous solution revealed that the occurrence of single-bend packed state can be stabilized by an intramolecular hydrogen bond from Leu(5)-NH to Gly(2)-CO (5-->2). In addition, an intramolecular sidechain to backbone hydrogen bond, i.e., hydrogen bond binding between the sidechain carbonyl CO group of the Cpa residue and backbone amide NH group of the Phe residue was examined. Furthermore, the hydration effects of carboxamido group (CONH(2)) for Cpa residue and 5-->2 hydrogen bond were calculated via the solute-solvent radial distribution functions g(alpha-beta) (r), providing direct evidence of strong hydrogen bond interactions. Our simulation results further reveal the chi(1) rotamers of the Cpa(1) and Phe(4) that show preferences for trans and gauche (-), respectively. Finally, we elucidate the probability distributions of two aromatic rings among the Cpa-LE, Leu-enkephalin, and delta pharmacophore model. The results show that modified the Tyr(1) to Cpa(1) can lead to increase the potency and selectivity for delta-opioid receptor (DOR), consistent with experimental findings.


Subject(s)
Analgesics, Opioid/chemistry , Enkephalin, Leucine/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Tyrosine/chemistry , Computer Simulation , Hydrogen Bonding , Molecular Conformation , Molecular Structure , Receptors, Opioid, delta/chemistry , Solutions , Structure-Activity Relationship , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...