Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(1): 754-61, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26694531

ABSTRACT

Melt-blown fibers (dav ∼1 µm) were produced from blends of poly(butylene terephthalate) (PBT) and a partially fluorinated random multiblock copolyester (PFCE) leading to enhanced hydrophobicity and even superhydrophobicity (static water contact angle = 157 ± 3°) of the associated fiber mats. XPS measurements demonstrated quantitatively that the surface fluorine content increased systematically with the bulk loading of PFCE, rising to nearly 20 atom %, which corresponds to 41 wt % PFCE at a bulk loading of 10 wt %. The PBT/PFCE fibers exhibit greater fluorine surface segregation than either melt-blown PBT/poly(ethylene-co-chlorotrifluoroethylene) (PBT/PECTFE) fibers or electrospun fibers obtained from blends of poly(styrene) and fluoroalkyl end-capped polystyrene (PS/PSCF). Dynamic contact angle measurements further demonstrated decreased surface adhesion energy of the melt-blown PBT/PFCE fiber mats due to the blooming of PFCE to the surface.

2.
ACS Appl Mater Interfaces ; 6(14): 11640-8, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24967614

ABSTRACT

The wetting properties of poly(butylene terephthalate) (PBT) melt blown fibers were tuned by alkaline hydrolysis and subsequent fluorination. Fiber mats were exposed to a NaOH methanol solution for controlled periods of time at several temperatures, resulting in surface hydrolysis (h-PBT). Subsequent simple solution chemistry was applied to the h-PBT fibers, leading to fluorination of the surface (f-PBT) and the transformation of the wetting properties of the material. Electron microscopy revealed that hydrolysis leads to a textured surface that is retained in the fluorinated product. Sessile drop wetting measurements demonstrated superhydrophilicity for the h-PBT fiber mats and sticky superhydrophobicity with the f-PBT fiber mat.

3.
ACS Macro Lett ; 2(4): 301-305, 2013 Apr 16.
Article in English | MEDLINE | ID: mdl-35581755

ABSTRACT

Nanofibers were generated by melt blowing three sets of polymer blends, each comprised of pairs of immiscible components. Blends containing minority phases (25% by volume) of poly(ethylene-co-chlorotrifluoroethylene) (PECTFE) in poly(butylene terephthalate) (PBT), PECTFE in poly(styrene) (PS), and PBT in PS were dispersed as droplets in a continuous majority phase and melt blown into long (>100 µm) fibers with average diameters of several micrometers. Electron microscopy experiments revealed that melt blowing transformed the initial spherical dispersions into a nanofiber-in-fiber morphology. Macroscopic mats of nonwoven PBT and PECTFE nanofibers, with average diameters as small as 70 nm, were isolated by selectively removing the majority phase with a solvent. This method provides a potentially inexpensive, high throughput, one-step route to scalable quantities of polymeric nanofibers.

SELECTION OF CITATIONS
SEARCH DETAIL
...