Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731949

ABSTRACT

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Subject(s)
Polyesters , Propane/analogs & derivatives , Tensile Strength , Polyesters/chemistry , Polypropylenes/chemistry , Food Packaging/methods , Steam , Polymers/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Temperature
2.
J Hazard Mater ; 435: 129068, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35650730

ABSTRACT

Frequent oil-spill accidents have posed serious threats to ecosystem balance and the efficiency of resources use. Hydrophobic adsorbents that can adsorb and recover oil without causing secondary pollution are ideal candidates for the remediation of oil contamination in water. However, these composites are inefficient for crude oil-spills cleanup because crude oil has low liquidity of at room temperature. Increasing the temperature can effectively enhance the flowability of crude oil. To achieve efficient crude-oil heating and removal in situ, wood aerogels were immersed in Ti3C2Tx suspensions and then coated with polydimethylsiloxane (PDMS) to obtain a solar-heated adsorbent (PT-WA). The prepared PT-WA exhibits super-hydrophobicity (water contact angle: 154° ± 2°), mechanical robustness (withstanding 20 loading-unloading cycles under 50% strain without structural damage), strong solar absorption, and favorable photothermal-conversion capability (rising to ~85 °C within 90 s under 1.5 sun). Owing to these advantages, PT-WA is an effective adsorbent for crude oil cleanup. In addition, a 'self-heating crude oil collector' was assembled for the fast adsorption and restoration of crude oil from the water surface. This solar-assisted self-heating sorbent offers a competitive platform for the cleanup and recycling of viscous crude oil spills.


Subject(s)
Petroleum , Adsorption , Ecosystem , Heating , Titanium , Water , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...