Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(12)2017 Dec 03.
Article in English | MEDLINE | ID: mdl-29207509

ABSTRACT

The security is a critical issue for business purposes. For example, the cloud meeting must consider strong security to maintain the communication privacy. Considering the scenario with cloud meeting, we apply extended chaotic map to present passwordless group authentication key agreement, termed as Passwordless Group Authentication Key Agreement (PL-GAKA). PL-GAKA improves the computation efficiency for the simple group password-based authenticated key agreement (SGPAKE) proposed by Lee et al. in terms of computing the session key. Since the extended chaotic map has equivalent security level to the Diffie-Hellman key exchange scheme applied by SGPAKE, the security of PL-GAKA is not sacrificed when improving the computation efficiency. Moreover, PL-GAKA is a passwordless scheme, so the password maintenance is not necessary. Short-term authentication is considered, hence the communication security is stronger than other protocols by dynamically generating session key in each cloud meeting. In our analysis, we first prove that each meeting member can get the correct information during the meeting. We analyze common security issues for the proposed PL-GAKA in terms of session key security, mutual authentication, perfect forward security, and data integrity. Moreover, we also demonstrate that communicating in PL-GAKA is secure when suffering replay attacks, impersonation attacks, privileged insider attacks, and stolen-verifier attacks. Eventually, an overall comparison is given to show the performance between PL-GAKA, SGPAKE and related solutions.

2.
Nanotechnology ; 25(18): 185401, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24737178

ABSTRACT

Four-layered plasmonic structures of glass/Au/TiO2/NaYF4:Yb, Er, Gd nanorods were fabricated and tremendous improvement in upconversion luminescence (UCL) was observed under infrared 980 nm excitation. The TiO2 film was used as an oxide spacer. The emission intensity of the upconversion (UC) nanorods was strongly modulated by the thickness of the TiO2 layer. The extent of modulation depended on the separation distance between the Au layer and UC nanorods. A maximum UCL enhancement of 192-fold was observed for one green emission (540 nm) when a 10 nm-thick TiO2 film was used; 150-fold was observed for the other green emission (521 nm) at the same thickness of TiO2; and 105-fold was observed for the red emission (654 nm) when a 7.5 nm-thick TiO2 film was used. Alteration of the radiative decay rate was demonstrated for the first time in measurements of the decay times of UC nanorods positioned at various distances from the Au layer. The light interaction and coupling between metal Au and UC nanorods is numerically studied. The UCL mechanisms of multilayer plasmonic structures are discussed. Experimental results are explained and correspond well with those of theoretical calculations.

3.
Nanotechnology ; 19(45): 455302, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-21832767

ABSTRACT

The authors present a simple and efficient technique for producing hexagonal arrays of nanostructures on silicon surfaces in chemical solutions. It utilizes the effect of optical near-field enhancement by self-assembled particle-lens arrays and a thermally induced chemical reaction with an alkaline solution. About 10(8) features can be produced simultaneously by one single laser pulse. Furthermore, the shape of the structures was found to be controllable, from concave holes to convex bumps, by means of a post-etching process, in the same chemical solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...