Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(2): 344-352, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35229507

ABSTRACT

Stem photosynthesis (Pg) is an alternative and significant carbon source, playing a crucial role in plant survival under extreme environment. The main aims of this study were to quantify stem and leaf photosynthesis, find out the main drivers of Pg, and estimate the contributions of Pg to plant individual carbon balance of two dominant species Haloxylon ammodendron and Tamarix ramosissima in Gurbantunggut Desert. A Li-Cor 6400 portable photosynthesis system and a special chamber were used to measure leaf and stem photosynthesis. Ancillary measurements included leaf/stem functional trait (chlorophyll content, water content, leaf/stem area, carbon/nitrogen content, etc.) and environmental factors (air temperature and humidity, photosynthetically active radiation, soil temperature, and soil water content). Our results showed that Pg of H. ammodendron and T. ramosissima was 2.37 and 0.98 µmol·m-2·s-1, Pg refixation CO2 of stem respiration by 65%-76% and 57%-77% in H. ammodendron and T. ramosissima. Pg was influenced by photosynthetically active radiation, air temperature, soil temperature and water vapor deficit. Pg assimilation CO2 accounted for 8.2%-16.6% and 3.6%-8.3% of CO2 assimilation of H. ammodendron and T. ramosissima, respectively. The maximum value appeared at noon when temperature was high. There might be fundamental defects if we ignore the contribution of branch photosynthesis when predicting carbon process of desert ecosystem under the background of climate change.


Subject(s)
Chenopodiaceae , Tamaricaceae , Desert Climate , Ecosystem , Photosynthesis , Plant Leaves
2.
Environ Sci Pollut Res Int ; 29(11): 16633-16652, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34651277

ABSTRACT

Research on mountain ecosystem services (MES) under the influence of climate change and human activities has gradually become the focus of academic attention in recent years. Here, this study analyzes the research hotspots and frontiers of this field based on metrics including main research forces, core journals and papers, research hotspots and topics by using the methods of bibliometrics and text mining. The results revealed the following: (1) the number of papers is increasing rapidly in recent years. From 2015 to 2019, 929 papers were published, with an average of 185 papers per year. But the average cited times of those papers is declining, dropped from 6.01 in 2016 to 4.2 in 2019. The USA, UK, and China rank the top three of the number of papers. Univ Maryland, Univ Oxford and Univ Wisconsin have the greatest influence, with an average of more than 77 citations per paper; (2) The most cited journals are PNAS, WETLANDS, ECOLOGY, AND SOCIETY, which are cited 191.54, 53.91, and 40.00 respectively. Most papers were published in OA journals including SUSTAINABILITY, WATER, Forests since 2017. Ten core papers undertaking knowledge transfer in this field have been identified; (3) analysis of the keywords found a new trend of integration of natural science and humanities. In two development stages of 2000-2014 and 2015-2019, the research hotspots mainly focused on mountain water resources, forest resources, land resources and the impact of climate change and human activities, and there are obvious differences and characteristics in different stages. The hotspot worthy of attention in the near future is the assessment of mountain ecosystem services capacity and value. This is the first comprehensive visualization and analysis of the research hotspots and trends of mountain ecosystem services.


Subject(s)
Bibliometrics , Ecosystem , Ecology , Forests
3.
PeerJ ; 7: e6497, 2019.
Article in English | MEDLINE | ID: mdl-30834185

ABSTRACT

The importance of soil microbial flora in agro-ecosystems is well known, but there is limited understanding of the effects of long-term fertilization on soil microbial community succession in different farming management practices. Here, we report the responses of soil microbial community structure, abundance and activity to chemical (CF) and organic fertilization (OF) treatments in a sandy agricultural system of wheat-maize rotation over a 17-year period. Illumina MiSeq sequencing showed that the microbial community diversity and richness showed no significant changes in bacteria but decreased in fungi under both CF and OF treatments. The dominant species showing significant differences between fertilization regimes were Actinobacteria, Acidobacteria and Ascomycota at the phylum level, as well as some unclassified genera of other phyla at the genus level. As expected, soil organic matter content, nutrient element concentrations and bacterial abundance were enhanced by both types of fertilization, especially in OF, but fungal abundance was inhibited by OF. Redundancy analysis revealed that soil enzyme activities were closely related to both bacterial and fungal communities, and the soil nutrient, texture and pH value together determined the community structures. Bacterial abundance might be the primary driver of crop yield, and soil enzyme activities may reflect crop yield. Our results suggest a relatively permanent response of soil microbial communities to the long-term fertilization regimes in a reclaimed sandy agro-ecosystem from a mobile dune, and indicate that the appropriate dosage of chemical fertilizers is beneficial to sandy soil sustainability.

4.
Sci Total Environ ; 478: 1-11, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24530579

ABSTRACT

Reconstructing vegetation in arid and semiarid areas has become an increasingly important management strategy to realize habitat recovery, mitigate desertification and global climate change. To assess the carbon sequestration potential in areas where sand-binding vegetation has been established on shifting sand dunes by planting xeric shrubs located near the southeastern edge of the Tengger Desert in northern China, we conducted a field investigation of restored dune regions that were established at different times (20, 30, 47, and 55 years ago) in the same area. We quantified the total organic carbon (TOC) in each ecosystem by summing the individual carbon contributions from the soil (soil organic carbon; SOC), shrubs, and grasses in each system. We found that the TOC, as well as the amount of organic carbon in the soil, shrubs, and grasses, significantly increased over time in the restored areas. The average annual rate of carbon sequestration was highest in the first 20 years after restoration (3.26 × 10(-2)kg·m(-2) ·year(-1)), and reached a stable rate (2.14 × 10(-2) kg·m(-2) ·year(-1)) after 47 years. Organic carbon storage in soil represented the largest carbon pool for both restored systems and a system containing native vegetation, accounting for 67.6%-85.0% of the TOC. Carbon in grass root biomass, aboveground grass biomass, litter, aboveground shrub biomass, and shrub root biomass account for 10.0%-21.0%, 0.2%-0.6%, 0.1%-0.2%, 1.7%-12.1% and 0.9%-6.2% of the TOC, respectively. Furthermore, we found that the 55-year-old restored system has the capacity to accumulate more TOC (1.02 kg·m(-2) more) to reach the TOC level found in the natural vegetation system. These results suggest that restoring desert ecosystems may be a cost-effective and environmentally friendly way to sequester CO2 from the atmosphere and mitigate the effects of global climate change.


Subject(s)
Carbon Sequestration , Conservation of Natural Resources/methods , Desert Climate , Environmental Restoration and Remediation/methods , Plant Development , Biomass , Carbon/analysis , China , Ecosystem , Environmental Monitoring , Silicon Dioxide , Soil/chemistry
5.
Ying Yong Sheng Tai Xue Bao ; 19(8): 1651-7, 2008 Aug.
Article in Chinese | MEDLINE | ID: mdl-18975737

ABSTRACT

An investigation was made on the standing vegetation and soil seed bank in desert riparian forest in lower reaches of Tarim River under effects of river-flooding. The results showed that the standing vegetation in non-flooded and flooded sites was composed of 14 species in 13 genera of 8 families, and 26 species in 21 genera of 10 families, respectively, and some shallow-rooted and hygrophilous species were recorded in flooded sites. The indices per unit area plant species number, vegetative coverage, plant density, and species diversity of the vegetation were all higher in flooded than in non-flooded sites. The species number of the soil seed bank in flooded sites was 19, with 5 species more than that in non-flooded sites, and the seed bank density in flooded sites was 2.94 times higher than that in non-flooded sites. The proportion of annual herbaceous species seeds in flooded sites increased by 23.07% while that of shrub species seeds decreased by 20.99%, compared with those in non-flooded sites, and the proportion of perennial herbaceous species seeds had less difference between these two sites. River-flooding increased the diversity of soil seed bank. In flooded and non-flooded sites, the co-occurrence species in seed bank and in standing vegetation were 18 and 9, with the similarity coefficients of species composition between soil seed bank and standing vegetation being 0.842 and 0.667, respectively.


Subject(s)
Desert Climate , Floods , Seeds/classification , Soil/analysis , Trees/growth & development , Biodiversity , China , Rivers
6.
Ying Yong Sheng Tai Xue Bao ; 19(12): 2611-7, 2008 Dec.
Article in Chinese | MEDLINE | ID: mdl-19288712

ABSTRACT

A field germination experiment of soil seed bank was carried out on two typical floodplains in the lower reaches of Tarim River, and a comparison was made between the soil seed banks and corresponding seedling banks on the two floodplains, aimed to assess the contribution of soil seed bank to the regeneration of damaged vegetation. The results showed that there were 12 plant species in the soil seed banks, and the life forms were mainly perennial herbs and shrubs. The soil seed banks had a density of 282.5 seeds m(-2) and 173.2 seeds x m(-2), and the seeds in top soil (0-2 cm) accounted for 76.9% and 71.0% of the total, respectively. The soil seed banks had significant effects on the seedlings species composition and density, and 84.7% and 99.4% of the seedlings on the two floodplains were emerged from corresponding soil seed banks. The similarity coefficient between soil seed bank and seedling bank of the two floodplains was 0.72 and 0.63, respectively, and there existed significant positive correlation between seedling density and soil seed bank density, illustrating that soil seed bank made important contribution to the natural regeneration of vegetation.


Subject(s)
Conservation of Natural Resources , Germination/physiology , Plant Development , Seeds/growth & development , Soil/analysis , China , Desert Climate , Ecosystem , Environmental Monitoring , Floods , Regeneration , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...