Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893863

ABSTRACT

Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 µs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.

2.
J Am Chem Soc ; 146(20): 13719-13726, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721780

ABSTRACT

With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.

3.
Chem Commun (Camb) ; 59(100): 14831-14834, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38013471

ABSTRACT

The enantioselective transformation of easily accessible 1,2-diketones represents a quick pathway towards enantioenriched molecules. Herein, we disclose a copper-catalyzed atroposelective formal [4+1] annulation of 1,2-diketones with vinyl cations, enabling the efficient and atom-economical construction of axially chiral arylpyrroles bearing 1,3-dioxole moieties with good to excellent enantioselectivities under mild reaction conditions. Importantly, this methodology constitutes the first enantioselective formal [4+1] annulation of 1,2-diketones.

4.
J Am Chem Soc ; 145(30): 16508-16516, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37471704

ABSTRACT

Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by PdII-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.

5.
J Am Chem Soc ; 145(25): 14124-14132, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37326516

ABSTRACT

Dihydrobenzofurans and indolines are important constituents of pharmaceuticals. Herein, we describe a novel strategy for their construction in which the aromatic ring is created de novo through an inverse-electron demand Diels-Alder reaction and cheletropic extrusion sequence of a 2-halothiophene-1,1-dioxide with an enol ether/enamide, followed by aromatization. Unusually, the aromatization process proved to be highly challenging, but it was discovered that treatment of the halocyclohexadienes with a base effected an α-elimination-aromatization reaction. Mechanistic investigation of this step using deuterium-labeling studies indicated the intermediacy of a carbene which undergoes a 1,2-hydrogen shift and subsequent aromatization. The methodology was applied to a modular and stereoselective total synthesis of the antiplatelet drug beraprost in only 8 steps from a key enal-lactone. This lactone provided the core of beraprost to which both its sidechains could be appended through a 1,4-conjugate addition process (lower ω-sidechain), followed by de novo construction of beraprost's dihydrobenzofuran (upper α-sidechain) using our newly developed methodology. Additionally, we have demonstrated the breadth of our newly established protocol in the synthesis of functionalized indolines, which occurred with high levels of regiocontrol. According to density-functional theory (DFT) calculations, the high selectivity originates from attractive London dispersion interactions in the TS of the Diels-Alder reaction.

6.
ACS Nano ; 17(11): 11023-11038, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37257082

ABSTRACT

Drug-free macromolecular therapeutics are promising alternatives to traditional drugs. Nanomedicines with multiple organelles targeting can potentially increase the efficacy. Herein, a drug-free macromolecular therapeutic was designed to formulate endoplasmic reticulum (ER) and mitochondria dual-targeting nanoparticles (EMT-NPs), which can synergistically elicit ER stress and mitochondrial dysfunction. In vitro experiments indicated that EMT-NPs could effectively enter ER and mitochondria at an approximate ratio of 2 to 3. Subsequently, EMT-NPs could upregulate ER stress-related protein expression (IRE1α, CHOP), boosting calcium ion (Ca2+) efflux and activating the caspase-12 signaling cascade in cancer cells. In addition, EMT-NPs induced direct oxidative stress in mitochondria; some mitochondrial-related apoptotic events such as decreased mitochondrial membrane potential (MMP), upregulation of Bax, cytochrome c release, and caspase-3 activation were also observed for tumor cells upon incubation with EMT-NPs. Furthermore, the leaked Ca2+ from ER could induce mitochondrial Ca2+ overloading to further augment cancer cell apoptosis. In brief, mitochondrial and ER signaling networks collaborated well to promote cancer cell death. Extended photoacoustic and fluorescence imaging served well for the treatment of in vivo patient-derived xenografts cancer model. This drug-free macromolecular strategy with multiple subcellular targeting provides a potential paradigm for cancer theranostics in precision nanomedicine.


Subject(s)
Endoribonucleases , Neoplasms , Humans , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases , Apoptosis , Endoplasmic Reticulum Stress , Mitochondria , Cell Line, Tumor , Membrane Potential, Mitochondrial , Neoplasms/drug therapy , Neoplasms/metabolism
7.
Angew Chem Int Ed Engl ; 61(45): e202208854, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36111975

ABSTRACT

Generality in analytical chemistry can be manifested in impactful platforms that can streamline modern organic synthesis and biopharmaceutical processes. We herein introduce a hybrid separation technique named Dual-Gradient Unified Chromatography (DGUC), which is built upon an automated dynamic modulation of CO2 , organic modifier, and water blends with various buffers. This concept enables simultaneous multicomponent analysis of both small and large molecules across a wide polarity range in single experimental runs. After a careful investigation of its fundamental aspects, a DGUC-DAD-MS screening workflow that combines multiple orthogonal column and mobile phase choices across a far-reaching universal elution profile is also reported. The power of this framework is demonstrated with new analytical applications guiding academic and industrial laboratories in the development of new (bio)pharmaceutical targets (e.g. synthetic intermediates, nucleosides, cyclic and linear peptides, proteins, antibody drug conjugates).


Subject(s)
Chromatography , Proteins , Proteins/analysis , Peptides , Water/chemistry , Nucleosides
8.
Angew Chem Int Ed Engl ; 61(20): e202201436, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35246909

ABSTRACT

In recent years, asymmetric catalysis of ynamides has attracted much attention, but these reactions mostly constructed central chirality, except for a few examples on the synthesis of axially chiral compounds which exclusively relied on noble-metal catalysis. Herein, a facile access to axially chiral N-heterocycles enabled by chiral Brønsted acid-catalyzed 5-endo-dig cyclization of ynamides is disclosed, which represents the first metal-free protocol for the construction of axially chiral compounds from ynamides. This method allows the practical and atom-economical synthesis of valuable N-arylindoles in excellent yields with generally excellent enantioselectivities. Moreover, organocatalysts and ligands based on such axially chiral N-arylindole skeletons are demonstrated to be applicable to asymmetric catalysis.

9.
Small Methods ; 5(3): e2000673, 2021 03.
Article in English | MEDLINE | ID: mdl-34927818

ABSTRACT

Ynamides are electron-rich heteroatom-substituted alkynes with C-C triple bond directly tethered to the amide group. Over the past decades, ynamides have proven to be versatile reagents for organic synthesis and have received extensive attention. Compared with the well-established ionic reactions of ynamides, radical-based ynamide reactions have been exploited relatively seldom. Herein, radical reactions of ynamides, classified by radical attack at the α-position and ß-position of ynamides, are reviewed by highlighting the reaction selectivity, scope, mechanism, and applicability. The aim of this review is to provide a comprehensive summarization of these advances, casting light on the further development of ynamide chemistry.

10.
Front Oncol ; 11: 626858, 2021.
Article in English | MEDLINE | ID: mdl-33842332

ABSTRACT

BACKGROUND: Alternative splicing (AS) is an indispensable post-transcriptional modification applied during the maturation of mRNA, and AS defects have been associated with many cancers. This study was designed to thoroughly analyze AS events in bladder urothelial carcinoma (BLCA) at the genome-wide level. METHODS: We adopted a gap analysis to screen for significant differential AS events (DASEs) associated with BLCA. DASEs with prognostic value for OS and the disease-free interval (DFI) were identified by Cox analysis. In addition, a differential AS network and AS clusters were identified using unsupervised cluster analysis. We examined differences in the sensitivity to chemotherapy and immunotherapy between BLCA patients with high and low overall survival (OS) risk. RESULTS: An extensive number of DASEs (296) were found to be clinically relevant in BLCA. A prognosis model was established based prognostic value of OS and DFI. CUGBP elav-like family member 2 (CELF2) was identified as a hub splicing factor for AS networks. We also identified AS clusters associated with OS using unsupervised cluster analysis, and we predicted that the effects of cisplatin and gemcitabine chemotherapy would be different between high- and low-risk groups based on OS prognosis. CONCLUSION: We completed a comprehensive analysis of AS events in BLCA at the genome-wide level. The present findings revealed that DASEs and splicing factors tended to impact BLCA patient survival and sensitivity to chemotherapy drugs, which may provide novel prospects for BLCA therapies.

11.
Angew Chem Int Ed Engl ; 59(41): 17984-17990, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32621338

ABSTRACT

Here an efficient copper-catalyzed cascade cyclization of azide-ynamides via α-imino copper carbene intermediates is reported, representing the first generation of α-imino copper carbenes from alkynes. This protocol enables the practical and divergent synthesis of an array of polycyclic N-heterocycles in generally good to excellent yields with broad substrate scope and excellent diastereoselectivities. Moreover, an asymmetric azide-ynamide cyclization has been achieved with high enantioselectivities (up to 98:2 e.r.) by employing BOX-Cu complexes as chiral catalysts. Thus, this protocol constitutes the first example of an asymmetric azide-alkyne cyclization. The proposed mechanistic rationale for this cascade cyclization is further supported by theoretical calculations.

12.
J Am Chem Soc ; 142(7): 3636-3644, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32003986

ABSTRACT

In the past decades, significant advances have been made on radical Smiles rearrangement. However, the eventually formed radical intermediates in these reactions are limited to the amidyl radical, except for the few examples initiated by a N-centered radical. Here, a novel and practical radical Smiles rearrangement triggered by photoredox-catalyzed regioselective ketyl-ynamide coupling is reported, which represents the first radical Smiles rearrangement of ynamides. This method enables facile access to a variety of valuable 2-benzhydrylindoles with broad substrate scope in generally good yields under mild reaction conditions. In addition, this chemistry can also be extended to the divergent synthesis of versatile 3-benzhydrylisoquinolines through a similar ketyl-ynamide coupling and radical Smiles rearrangement, followed by dehydrogenative oxidation. Moreover, such an ynamide Smiles rearrangement initiated by intermolecular photoredox catalysis via addition of external radical sources is also achieved. By control experiments, the reaction was shown to proceed via key ketyl radical and α-imino carbon radical intermediates.

13.
Angew Chem Int Ed Engl ; 59(4): 1666-1673, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31724314

ABSTRACT

6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5-7-membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl-anion- and triene-type 6π electrocyclizations. Described herein is a zinc-catalyzed formal [4+3] annulation of isoxazoles with 3-en-1-ynol ethers via 6π electrocyclization, leading to the site-selective synthesis of functionalized 2H-azepines and 4H-azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H-azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl-cation-type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.

14.
J Am Chem Soc ; 141(42): 16961-16970, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31557018

ABSTRACT

The generation of metal carbenes from readily available alkynes represents a significant advance in metal carbene chemistry. However, most of these transformations are based on the use of noble-metal catalysts and successful examples of such an asymmetric version are still very scarce. Here a copper-catalyzed enantioselective cascade cyclization of N-propargyl ynamides is reported, enabling the practical and atom-economical construction of diverse chiral polycyclic pyrroles in generally good to excellent yields with wide substrate scope and excellent enantioselectivities (up to 97:3 e.r.). Importantly, this protocol represents the first copper-catalyzed asymmetric diyne cyclization. Moreover, mechanistic studies revealed that the generation of donor/donor copper carbenes is presumably involved in this 1,5-diyne cyclization, which is distinctively different from the related gold catalysis, and thus it constitutes a novel way for the generation of donor/donor metal carbenes.

15.
Org Biomol Chem ; 15(48): 10156-10159, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29181478

ABSTRACT

A novel copper-catalyzed N-oxide oxidation of N-sulfonyl ynamides is disclosed. This non-noble metal-catalyzed protocol enables facile and efficient access to valuable α-keto imides in generally good to excellent yields. Other notable features of this method include widespread availability of the substrates, compatibility with broad functional groups, a simple procedure, mild conditions, and in particular, no need to exclude moisture or air ("open flask").

16.
Chem Commun (Camb) ; 53(51): 6848-6851, 2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28604863

ABSTRACT

A novel dual gold/photoredox-catalyzed bis-arylative cyclization of chiral homopropargyl sulfonamides with diazonium salts has been developed, allowing the facile synthesis of various enantioenriched 2,3-dihydropyrroles in generally moderate to good yields with excellent enantioselectivities under very mild conditions without using any strong oxidants. The reaction is proposed to undergo an AuI/AuIII redox cycle promoted by visible-light photoredox catalysis.

17.
J Org Chem ; 79(15): 6816-22, 2014 08 01.
Article in English | MEDLINE | ID: mdl-24983135

ABSTRACT

The reaction mechanism of copper-catalyzed phosphorylation of terminal alkynes under different conditions has been investigated experimentally and theoretically. The important role of dioxygen has been elucidated, including the formation of η(1)-superoxocopper(II), η(2)-superoxocopper(III), µ-η(2):η(2)-peroxodicopper(II), and bis(µ-oxo)dicopper(III) complexes. More importantly, the proton transfer from the dialkyl phosphonate (in the form of phosphite) to the bridging oxygen atom entails the migration of the deprotonated phosphonate to the terminal alkyne, leading to the formation of a C-P bond with an activation barrier of only 1.8 kcal/mol. In addition, a particularly stable six-centered dicopper(I) species is formed with the migration of both of the Ph2P(O) groups from the copper atoms to the oxygen atoms of the bis(µ-oxo) bridge, explaining the experimental observation that secondary phosphine oxides can be oxidized to the phosphinic acids. Thus, the diphenylphosphine oxide was added to the reaction mixture dropwise to minimize the concentration during the reaction course. Gratifyingly, the coupling product was generated almost quantitatively when the reaction was completed.


Subject(s)
Alkynes/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Oxidation-Reduction , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...