Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 352
Filter
1.
J Ethnopharmacol ; : 118409, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823662

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: China and India have unique traditional medicine systems with vast territory and rich medical resources. Traditional medicines in China include traditional Chinese medicine, Tibetan medicine, Mongolian medicine, Uyghur medicine, Dai medicine, etc. In the third national survey of Chinese medicine resources, 12694 medicinal materials were identified. Traditional medicines in India include Ayurveda, Unani, Siddha, Homoeopathy, etc. There are 7263 medicinal materials in India. AIM OF THE STUDY: To reveal the characteristics of medicinal materials between China and India respectively, and to compare the similarities and differences in terms of properties, tastes, medicinal parts and therapeutic uses and to promote the exchange of traditional medicine between China and India and the international trade of traditional medicine industry. METHODS: The information of medicinal materials between China and India was extracted from The Chinese Traditional Medicine Resource Records and Pharmacopoeia of the People's Republic of China, as well as from 71 Indian herbal monographs. The information of each medicinal material, such as types, families, genera, properties, distribution, medicinal parts, efficacy, therapeutic uses, dosage form and dosage, was recorded in Excel for statistical analysis and visual comparison. RESULTS: A total of 12694 medicinal materials in China and 5362 medicinal materials in India were identified. The medicinal materials were mostly distributed in Southwest China and northern India. Plants were the main sources of medicinal materials. The common medicinal parts in China were whole medicinal materials, roots and rhizomes, and India used more renewable fruits, seeds and leaves. They are commonly used in the treatment of digestive system diseases. There were 1048 medicinal materials used by both China and India, which were distributed in 188 families and 685 genera. The Chinese and Indian pharmacopoeias had a total of 80 species of medicinal materials used by both China and India. CONCLUSIONS: The characteristics of medicinal materials between China and India were somewhat different, which was conducive to provide a reference basis for traditional medicine in China or India to increase the medicinal parts and indications when using a certain medicinal material, as well as to expand the source of medicine and introduce new resources. However, there were certain similarities and shared medicinal materials, which can tap the potential of bilateral trade of medicinal materials between China and India, so as to promote the medical cultural exchange and economic and trade cooperation between the two countries.

2.
Respir Res ; 25(1): 223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811936

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS: We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS: The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION: Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.


Subject(s)
Community-Acquired Infections , Microbiota , Severity of Illness Index , Sputum , Humans , Community-Acquired Infections/microbiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Male , Female , Sputum/microbiology , Middle Aged , Aged , Retrospective Studies , Longitudinal Studies , Cohort Studies , Dysbiosis/microbiology , Dysbiosis/diagnosis , Pneumonia/microbiology , Pneumonia/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Aged, 80 and over , Adult
3.
Respir Res ; 25(1): 165, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622589

ABSTRACT

Little is known about the relationships between human genetics and the airway microbiome. Deeply sequenced airway metagenomics, by simultaneously characterizing the microbiome and host genetics, provide a unique opportunity to assess the microbiome-host genetic associations. Here we performed a co-profiling of microbiome and host genetics with the identification of over 5 million single nucleotide polymorphisms (SNPs) through deep metagenomic sequencing in sputum of 99 chronic obstructive pulmonary disease (COPD) and 36 healthy individuals. Host genetic variation was the most significant factor associated with the microbiome except for geography and disease status, with its top 5 principal components accounting for 12.11% of the microbiome variability. Within COPD individuals, 113 SNPs mapped to candidate genes reported as genetically associated with COPD exhibited associations with 29 microbial species and 48 functional modules (P < 1 × 10-5), where Streptococcus salivarius exhibits the strongest association to SNP rs6917641 in TBC1D32 (P = 9.54 × 10-8). Integration of concurrent host transcriptomic data identified correlations between the expression of host genes and their genetically-linked microbiome features, including NUDT1, MAD1L1 and Veillonella parvula, TTLL9 and Stenotrophomonas maltophilia, and LTA4H and Haemophilus influenzae. Mendelian randomization analyses revealed a potential causal link between PARK7 expression and microbial type III secretion system, and a genetically-mediated association between COPD and increased relative abundance of airway Streptococcus intermedius. These results suggest a previously underappreciated role of host genetics in shaping the airway microbiome and provide fresh hypotheses for genetic-based host-microbiome interactions in COPD.


Subject(s)
Microbiota , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/complications , Microbiota/genetics , Sputum , Transcriptome , Human Genetics , Adaptor Proteins, Signal Transducing/genetics
4.
Respir Res ; 25(1): 173, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643126

ABSTRACT

RATIONALE: Our understanding of airway dysbiosis in chronic obstructive pulmonary disease (COPD) remains incomplete, which may be improved by unraveling the complexity in microbial interactome. OBJECTIVES: To characterize reproducible features of airway bacterial interactome in COPD at clinical stability and during exacerbation, and evaluate their associations with disease phenotypes. METHODS: We performed weighted ensemble-based co-occurrence network analysis of 1742 sputum microbiomes from published and new microbiome datasets, comprising two case-control studies of stable COPD versus healthy control, two studies of COPD stability versus exacerbation, and one study with exacerbation-recovery time series data. RESULTS: Patients with COPD had reproducibly lower degree of negative bacterial interactions, i.e. total number of negative interactions as a proportion of total interactions, in their airway microbiome compared with healthy controls. Evaluation of the Haemophilus interactome showed that the antagonistic interaction networks of this established pathogen rather than its abundance consistently changed in COPD. Interactome dynamic analysis revealed reproducibly reduced antagonistic interactions but not diversity loss during COPD exacerbation, which recovered after treatment. In phenotypic analysis, unsupervised network clustering showed that loss of antagonistic interactions was associated with worse clinical symptoms (dyspnea), poorer lung function, exaggerated neutrophilic inflammation, and higher exacerbation risk. Furthermore, the frequent exacerbators (≥ 2 exacerbations per year) had significantly reduced antagonistic bacterial interactions while exhibiting subtle compositional changes in their airway microbiota. CONCLUSIONS: Bacterial interactome disturbance characterized by reduced antagonistic interactions, rather than change in pathogen abundance or diversity, is a reproducible feature of airway dysbiosis in COPD clinical stability and exacerbations, which suggests that we may target interactome rather than pathogen alone for disease treatment.


Subject(s)
Dysbiosis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Haemophilus , Sputum/microbiology , Disease Progression
5.
Phytomedicine ; 128: 155543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657364

ABSTRACT

BACKGROUND: Ershiwuwei Zhenzhu pills was originally recorded in the Tibetan medical book Si Bu Yi Dian in the 8th century AD and is now included in the Pharmacopoeia of the People's Republic of China (2020). The pills can calm the nerves and open the mind as well as treat cerebral ischemia reperfusion injury, stroke, hemiplegia. However, its quality standards have not yet been established, and the therapeutic effect on cerebral ischemia by regulating the mitochondrial apoptosis pathway has not been elucidated. STUDY DESIGN AND METHODS: LC-MS was used to establish quality standards for Ershiwuwei Zhenzhu pills. Metabonomics, molecular docking, neuroethology, cerebral infarction ratio, pathological detection of diencephalon, cortex, and hippocampus, and molecular biology techniques were used to reveal the mechanism of the pills in regulating the mitochondrial apoptosis pathway to treat cerebral ischemia. RESULTS: The contents of 20 chemical components in Ershiwuwei Zhenzhu pills from 12 batches and 8 manufacturers was determined for the first time. Eleven differential metabolites and three metabolic pathways, namely, fructose and mannose metabolism, glycerophospholipid metabolism, and purine metabolism, were identified by metabonomics. The pills improved the neuroethology abnormalities of MCAO rats and the pathological damage in the diencephalon and decreased the ratio of cerebral infarction. It also significantly reduced the mRNA expression of AIF, Apaf-1, cleared caspase8, CytC, and P53 mRNA in the brain tissue and the protein expression of Apaf-1 and CYTC and increased the protein expression of NDRG4. CONCLUSION: In vitro quantitative analysis of the in vitro chemical components of Ershiwuwei Zhenzhu pills has laid the foundation for improving its quality control. The potential mechanism of the pills in treating cerebral ischemia may be related to the Apaf-1/CYTC/NDRG4 apoptosis pathway. This work provides guidance for clinical drug use for patients.


Subject(s)
Apoptotic Protease-Activating Factor 1 , Brain Ischemia , Drugs, Chinese Herbal , Metabolomics , Rats, Sprague-Dawley , Animals , Brain Ischemia/drug therapy , Male , Drugs, Chinese Herbal/pharmacology , Rats , Apoptotic Protease-Activating Factor 1/metabolism , Apoptosis/drug effects , Chromatography, Liquid , Molecular Docking Simulation , Medicine, Tibetan Traditional , Mass Spectrometry , Liquid Chromatography-Mass Spectrometry
6.
Clin Interv Aging ; 19: 529-538, 2024.
Article in English | MEDLINE | ID: mdl-38525315

ABSTRACT

Purpose: To evaluate the performance of the Framingham cardiovascular risk score (FRS)/pooled cohort equations (PCE)/China prediction for atherosclerotic cardiovascular disease (ASCVD) risk (China-PAR model) in a prospective cohort of Chinese older adults. Patients and Methods: We assessed 717 older adults aged 75-85 years without ASCVD at the baseline from the Sichuan province of China. The participants were followed annually from 2011 to 2021. We obtained the participants' information through the medical records of physical examination and evaluated their 10-year ASCVD risk using FRS, PCE, and China-PAR. We further evaluated the predictive abilities of three assessment models. Results: During the 10-year follow-up, 206 participants developed ASCVD, with an incidence rate of 28.73%. The FRS and China-PAR moderately underestimated the risk of ASCVD (22.1% and 12.4%, respectively), but while PCE overestimated the risk (36.1%). FRS and China-PAR were found to underestimate the risk of ASCVD (26% and 63%, respectively) for men, while PCE overestimated the risk by 8%; For women, FRS and China-PAR were found to underestimate the risk of ASCVD (14% and 35%, respectively), while PCE overestimated the risk by 88%. Conclusion: The 10-year ASCVD risk was found to be overestimated by PCE. China-PAR had the most accurate predictions in women, while FRS was particularly well-calibrated in males. All three risk models have good discrimination, with FRS and PCE being well-calibrated in men and all three being well-calibrated in women. Therefore, accurate risk models are warranted to facilitate the prevention of ASCVD at the baseline among Chinese older adults.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Male , Humans , Female , Aged , Risk Factors , Risk Assessment , Cardiovascular Diseases/epidemiology , Prospective Studies , Atherosclerosis/epidemiology
7.
Front Pharmacol ; 15: 1338725, 2024.
Article in English | MEDLINE | ID: mdl-38495096

ABSTRACT

Introduction: The toxicity of arsenic is widely recognized globally, mainly harming human health by polluting water, soil, and food. However, its formulations can also be used for the clinical treatment of diseases such as leukemia and tumors. Arsenic has been used as a drug in China for over 2,400 years, with examples such as the arsenic-containing drug realgar mentioned in Shennong's Herbal Classic. We have reviewed references on arsenic over the past thirty years and found that research has mainly focused on clinical, pharmacological, and toxicological aspects. Results and Discussion: The finding showed that in clinical practice, arsenic trioxide is mainly used in combination with all-trans retinoic acid (ATRA) at a dose of 10 mg/d for the treatment of acute promyelocytic leukemia (APL); realgar can be used to treat acute promyelocytic leukemia, myelodysplastic syndrome, and lymphoma. In terms of pharmacology, arsenic mainly exerts anti-tumor effects. The dosage range of the action is 0.01-80 µmol/L, and the concentration of arsenic in most studies does not exceed 20 µmol/L. The pharmacological effects of realgar include antiviral activity, inhibition of overactivated lactate dehydrogenase, and resistance to malaria parasites. In terms of toxicity, arsenic is toxic to multiple systems in a dose-dependent manner. For example, 5 µmol/L sodium arsenite can induce liver oxidative damage and promote the expression of pro-inflammatory factors, and 15 µmol/L sodium arsenite induces myocardial injury; when the concentration is higher, it is more likely to cause toxic damage.

8.
Angew Chem Int Ed Engl ; 63(18): e202400538, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38419141

ABSTRACT

Interactions between host and bacterial cells are integral to human physiology. The complexity of host-microbe interactions extends to different cell types, spatial aspects, and phenotypic heterogeneity, requiring high-resolution approaches to capture their full complexity. The latest breakthroughs in single-cell RNA sequencing (scRNA-seq) have opened up a new era of studies in host-pathogen interactions. Here, we first report a high-throughput cross-species dual scRNA-seq technology by using random primers to simultaneously capture both eukaryotic and bacterial RNAs (scRandom-seq). Using reference cells, scRandom-seq can detect individual eukaryotic and bacterial cells with high throughput and high specificity. Acinetobacter baumannii (A.b) is a highly opportunistic and nosocomial pathogen that displays resistance to many antibiotics, posing a significant threat to human health, calling for discoveries and treatment. In the A.b infection model, scRandom-seq witnessed polarization of THP-1 derived-macrophages and the intracellular A.b-induced ferroptosis-stress in host cells. The inhibition of ferroptosis by Ferrostatin-1 (Fer-1) resulted in the improvement of cell vitality and resistance to A.b infection, indicating the potential to resist related infections. scRandom-seq provides a high-throughput cross-species dual single-cell RNA profiling tool that will facilitate future discoveries in unraveling the complex interactions of host-microbe interactions in infection systems and tumor micro-environments.


Subject(s)
Acinetobacter baumannii , Ferroptosis , Humans , High-Throughput Nucleotide Sequencing , Macrophages/microbiology , Sequence Analysis, RNA/methods , Single-Cell Analysis
10.
Small Methods ; 8(2): e2300243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37491782

ABSTRACT

Polymer-based room-temperature phosphorescence (RTP) materials, especially polysaccharide-based RTP materials, earn sustained attention in the fields of anti-counterfeiting, data encryption, and optoelectronics owing to their green regeneration, flexibility, and transparency. However, those with both ultralong phosphorescence lifetime and excitation wavelength-dependent afterglow are rarely reported. Herein, a kind of amorphous RTP material with ultralong lifetime of up to 2.52 s is fabricated by covalently bonding sodium alginate (SA) with arylboronic acid in the aqueous phase. The resulting polymer film exhibits distinguished RTP performance with excitation-dependent emissions from cyan to green. Specifically, by co-doping with other fluorescent dyes, further regulation of the afterglow color from cyan to yellowish-green and near-white can be achieved through triplet-to-singlet Förster resonance energy transfer. In addition, the water-sensitive properties of hydrogen bonds endow the RTP property of SA-based materials with water/heat-responsive characteristics. On account of the color-tunable and stimuli-responsive afterglows, these smart materials are successfully applied in data encryption and anti-counterfeiting.

11.
Nicotine Tob Res ; 26(4): 474-483, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37535700

ABSTRACT

INTRODUCTION: Electronic cigarettes (E-cigs) are in a controversial state. Although E-cig aerosol generally contains fewer harmful substances than smoke from burned traditional cigarettes, aerosol along with other compounds of the E-cigs may also affect lung functions and promote the development of lung-related diseases. We investigated the effects of E-cig on the pulmonary functions of male C57BL/6 mice and reveal the potential underlying mechanisms. METHODS: A total of 60 male C57BL/6 mice were randomly divided into four groups. They were exposed to fresh-air, traditional cigarette smoke, E-cig vapor with 12 mg/mL of nicotine, and E-cig with no nicotine for 8 weeks. Lung functions were evaluated by using quantitative analysis of the whole body plethysmograph, FlexiVent system, lung tissue histological and morphometric analysis, and RT-PCR analysis of mRNA expression of inflammation-related genes. In addition, the effects of nicotine and acrolein on the survival rate and DNA damage were investigated using cultured human alveolar basal epithelial cells. RESULTS: Exposure to E-cig vapor led to significant changes in lung functions and structures including the rupture of the alveolar cavity and enlarged alveolar space. The pathological changes were also accompanied by increased expression of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS: The findings of the present study indicate that the safety of E-cig should be further evaluated. IMPLICATIONS: Some people currently believe that using nicotine-free E-cigs is a safe way to smoke. However, our research shows that E-cigs can cause lung damage regardless of whether they contain nicotine.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Mice , Animals , Male , Humans , Nicotine/adverse effects , Nicotine/metabolism , Mice, Inbred C57BL , Lung , Aerosols/pharmacology
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013592

ABSTRACT

Aim To investigate the effect of long non- coding RNA p21 (LncRNA p21) regulating Hippo- Yes-associated protein (Hippo-YAP) signaling pathway on the formation of abdominal aortic aneurysm (AAA) in mice. Methods C57BL/6 ApoE

14.
J Ethnopharmacol ; 319(Pt 2): 117310, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37827296

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Erigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368-1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of "Zuo tan you huan." In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. AIM OF THE STUDY: In this study, a metabonomics study based on ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. MATERIALS AND METHODS: This study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. RESULTS: Erigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP-kynurequinolinic acid and succinylornithine-urea cycle-NO metabolic pathways. CONCLUSIONS: This paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.


Subject(s)
Brain Ischemia , Erigeron , Ischemic Stroke , Reperfusion Injury , Rats , Animals , Erigeron/chemistry , Molecular Docking Simulation , Leucine/therapeutic use , China , Metabolomics/methods , Brain Ischemia/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Tandem Mass Spectrometry , Cerebral Infarction , Biomarkers , Proline , Chromatography, High Pressure Liquid
15.
Innate Immun ; 30(1): 11-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043934

ABSTRACT

Acute lung injury (ALI) is the leading cause of death in patients with sepsis syndrome and without effective protective or therapeutic treatments. Acacetin, a natural dietary flavonoid, reportedly exerts several biological effects, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, acacetin's effect and underlying mechanism on sepsis-induced ALI remain unclear. Here, the mouse model was established to explore the impact of acacetin on sepsis-induced ALI. Acacetin significantly increased ALI murine survival and attenuated lung injury in histological examinations. Additionally, acacetin down-regulated myeloperoxidase activity, protein concentration, and number of neutrophils and macrophages in bronchoalveolar lavage fluid. Subsequently, inflammatory cytokines, including TNF-α, IL-1ß, and IL-6, were examined. Results showed that acacetin dramatically suppressed the production of TNF-α, IL-1ß, and IL-6. These above results indicated that acacetin attenuated sepsis-induced ALI by inhibiting the inflammatory response. Moreover, acacetin inhibited the expression of markers for M1-type (iNOS, CD86) macrophages and promoted the expression of markers for M2-type (CD206, Arg1) macrophages by western blot. In addition, acacetin down-regulated the expression TRAF6, NF-κB, and Cyclooxygenase-2 (COX2) by western blot. The high concentration of acacetin had a better effect than the low concentration. Besides, over-expression of TRAF6 up-regulated the expression of COX2, CD86, and iNOS, and the ratio of p-NF-κB to NF-κB increased the mRNA levels of TNF-α, IL-1ß, and IL-6, down-regulated the expression of CD206 and Arg1. The effects of TRAF6 were the opposite of acacetin. And TRAF6 could offset the impact of acacetin. This study demonstrated that acacetin could prevent sepsis-induced ALI by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis.


Subject(s)
Acute Lung Injury , Sepsis , Humans , Mice , Animals , NF-kappa B/metabolism , Cyclooxygenase 2/adverse effects , Cyclooxygenase 2/metabolism , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Signal Transduction , Acute Lung Injury/drug therapy , Macrophages/metabolism , Anti-Inflammatory Agents/therapeutic use , Sepsis/drug therapy , Lipopolysaccharides/pharmacology
16.
Eur J Pharmacol ; 964: 176291, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38158115

ABSTRACT

OBJECTIVE: To identify therapeutic targets for malignant rhabdoid tumors of kidney (MRTK) and to investigate the effects and underlying mechanism of doxycycline hydrochloride on these tumors. METHODS: Gene expression and clinical data of MRTK were retrieved from the TARGET database. Differentially expressed genes (DEGs) and prognostic-related genes (PRGs) were selected through a combination of statistical analyses. The functional roles of MMP17 and MMP1 were elucidated through RNA overexpression and intervention experiments. Furthermore, in vitro and in vivo studies provided evidence for the inhibitory effect of doxycycline hydrochloride on MRTK. Additionally, transcriptome sequencing was employed to investigate the underlying molecular mechanisms. RESULTS: 3507 DEGs and 690 PRGs in MRTK were identified. Among these, we focused on 41 highly expressed genes associated with poor prognosis and revealed their involvement in extracellular matrix regulatory pathways. Notably, MMP17 and MMP1 stood out as particularly influential genes. When these genes were knocked out, a significant inhibition of proliferation, invasion and migration was observed in G401 cells. Furthermore, our study explored the impact of the matrix metalloproteinase inhibitor, doxycycline hydrochloride, on the malignant progression of G401 both in vitro and in vivo. Combined with sequencing data, the results indicated that doxycycline hydrochloride effectively inhibited MRTK progression, due to its ability to suppress the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway. CONCLUSION: Doxycycline hydrochloride inhibits the expression of MMP17 and MMP1 through the PI3K-Akt signaling pathway, thereby inhibiting the malignant progression of MRTK in vivo and in vitro.


Subject(s)
Doxycycline , Kidney Neoplasms , Matrix Metalloproteinase 17 , Rhabdoid Tumor , Humans , Doxycycline/pharmacology , Doxycycline/therapeutic use , Kidney/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 17/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rhabdoid Tumor/drug therapy , Rhabdoid Tumor/pathology , Signal Transduction
17.
Pediatr Surg Int ; 40(1): 29, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150145

ABSTRACT

To evaluate the efficiency and long-term renal function of nephron sparing surgery (NSS) in unilateral WT patients compared with radical nephrectomy (RN). The review was performed following Cochrane Handbook guidelines and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched five databases (Pubmed, Embase, Scopus, Web of Science and Cochrane) for studies reporting the efficiency and late renal function of NSS and/or RN on February 10, 2023. Comparative studies were evaluated by Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) and RoB 2.0. Assessed outcomes included survival rate, relapse rate, eGFR, renal dysfunction and hypertension. 26 studies involving 10322 unilateral WT cases underwent RN and 657 unilateral WT cases underwent NSS were enrolled. Overall effect estimates demonstrated that NSS significantly increased eGFR at follow-up (SMD, 0.38; 95% CI 0.05-0.72; p = 0.025) compared to that at diagnosis, and RN did not significantly decrease eGFR at follow-up (SMD, - 0.33; 95% CI - 0.77-0.11; p = 0.142) compared to that at diagnosis. Moreover, no significant difference was found in outcomes of survivability (OR, 1.38; 95% CI 0.82-2.32; p = 0.226), recurrence (OR, 0.62; 95% CI 0.34-1.12; p = 0.114), eGFR at follow-up (SMD, 0.16; 95% CI - 0.36-0.69; p = 0.538), renal dysfunction (OR, 0.36; 95% CI 0.07-1.73; p = 0.200) and hypertension (OR, 0.17; 95% CI 0.03-1.10; p = 0.063). Current evidence suggests that NSS is safe and effective for unilateral WT patients, because it causes better renal function and similar oncological outcomes compared with RN. Future efforts to conduct more high-quality studies and explore sources of heterogeneity is recommended.


Subject(s)
Hypertension , Kidney Neoplasms , Wilms Tumor , Humans , Kidney/surgery , Wilms Tumor/surgery , Nephrectomy , Disease Progression , Kidney Neoplasms/surgery , Nephrons/surgery
18.
Heliyon ; 9(11): e21281, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027933

ABSTRACT

Objective: Partial bladder outlet obstruction(pBOO) is the most common cause of lower urinary tract symptoms (LUTS) and significantly affects the quality of life. Long-term pBOO can cause changes in bladder structure and function, referred to as bladder remodeling. The pathogenesis of pBOO-induced bladder remodeling has yet to be fully understood, so effective treatment options are lacking. Our study aimed to explore how pBOO-induced bladder remodeling brings new strategies for treating pBOO. Methods: A rat model of pBOO was established by partial ligation of the bladder neck, and the morphological changes and fibrosis changes in the bladder tissues were detected by H&E and Masson trichrome staining. Furthermore, EMT(epithelial-mesenchymal transition) related indicators and related pathway changes were further examined after TGF- ß treatment of urothelial cells SV-HUC-1. Finally, the above indicators were tested again after using the PI3K inhibitor. Subsequently, RNA sequencing of bladder tissues to identify differential genes and related pathways enrichment and validated by immunofluorescence and western blotting analysis. Results: The pBOO animal model was successfully established by partially ligating the bladder neck. H&E staining showed significant changes in the bladder structure, and Masson trichrome staining showed significantly increased collagen fibers. RNA sequencing results significantly enriched in the cytoskeleton, epithelial-mesenchymal transformation, and the PI3K-AKT-mTOR signaling pathway. Immunofluorescence and western blotting revealed EMT and cytoskeletal remodeling in SV-HUC-1 cells after induction of TGF- ß and in the pBOO bladder tissues. The western blotting showed significant activation of the PI3K-AKT-mTOR signaling pathway in SV-HUC-1 cells after induction of TGF-ß and in pBOO bladder tissues. Furthermore, EMT and cytoskeletal damage were partially reversed after PI3K pathway inhibition using PI3K inhibitors. Conclusions: In the pBOO rat model, the activation of the PI3K-AKT-mTOR signaling pathway can mediate the cytoskeletal remodeling and the EMT to induce fibrosis in the bladder tissues. PI3K inhibitors partially reversed EMT and cytoskeletal damage.

19.
Respir Res ; 24(1): 264, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919749

ABSTRACT

The prevalence and clinical correlates of antibiotic resistance genes (ARGs) in bronchiectasis are not entirely clear. We aimed to profile the ARGs in sputum from adults with bronchiectasis, and explore the association with airway microbiome and disease severity and subtypes. In this longitudinal study, we prospectively collected 118 sputum samples from stable and exacerbation visits of 82 bronchiectasis patients and 19 healthy subjects. We profiled ARGs with shotgun metagenomic sequencing, and linked these to sputum microbiome and clinical characteristics, followed by validation in an international cohort. We compared ARG profiles in bronchiectasis according to disease severity, blood and sputum inflammatory subtypes. Unsupervised clustering revealed a Pseudomonas predominant subgroup (n = 16), Haemophilus predominant subgroup (n = 48), and balanced microbiome subgroup (N = 54). ARGs of multi-drug resistance were over-dominant in the Pseudomonas-predominant subgroup, while ARGs of beta-lactam resistance were most abundant in the Haemophilus-predominant subgroup. Pseudomonas-predominant subgroup yielded the highest ARG diversity and total abundance, while Haemophilus-predominant subgroup and balanced microbiota subgroup were lowest in ARG diversity and total abundance. PBP-1A, ksgA and emrB (multidrug) were most significantly enriched in Haemophilus-predominant subtype. ARGs generally correlated positively with Bronchiectasis Severity Index, fluoroquinolone use, and modified Reiff score. 68.6% of the ARG-clinical correlations could be validated in an independent international cohort. In conclusion, ARGs are differentially associated with the dominant microbiome and clinical characteristics in bronchiectasis.


Subject(s)
Bronchiectasis , Haemophilus , Adult , Humans , Pseudomonas , Longitudinal Studies , Bronchiectasis/diagnosis , Bronchiectasis/genetics , Respiratory System , Anti-Bacterial Agents/therapeutic use
20.
Eur J Med Res ; 28(1): 503, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37941038

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. Due to drug resistance to radiotherapy and chemotherapy, mainly due to the existence of cancer stem cells (CSCs), some children still have a poor prognosis. Therefore, researchers have focused their attention on CSCs. Our research group successfully constructed cancer stem cell-like cells named Piwil2-iCSCs by reprogramming human preputial fibroblasts (FBs) with the PIWIL2 gene in the early stage, and Piwil2-iCSCs were confirmed to induce the formation of embryonic tumors. PiRNAs, noncoding small RNAs that interact with PIWI proteins, play important roles in a variety of tumors. Therefore, our study aimed to explore the role of differentially expressed (DE) piRNAs derived from sequencing of Piwil2-iCSCs in NB. METHODS: The DE piRNAs in Piwil2-iCSCs were screened using high-throughput sequencing and further verified in NB tissues and cells. An unknown piRNA, named piRNA-MW557525, showed obvious downregulation in NB. Thus we studied the effect of piRNA-MW557525 on the biological behavior of NB through in vitro and in vivo experiments. On this basis, we successfully constructed a stably transfected NB cell line overexpressing piRNA-MW557525 and performed transcriptome sequencing to further explore the mechanism of piRNA-MW557525 in NB. RESULTS: In vitro, piRNA-MW557525 inhibited NB cell proliferation, migration and invasion and induced apoptosis; in vivo, piRNA-MW557525 significantly reduced the volume and weight of tumors and inhibited their proliferation, migration and invasion. piRNA-MW557525 overexpression induced G0/G1 phase arrest in NB cells via activation of the P53-P21-CDK2-Cyclin E signaling pathway thus inhibiting NB growth. CONCLUSIONS: Our findings show that piRNA-MW557525 functions as a tumor suppressor gene in NB and may serve as an innovative biomarker and possible therapeutic target for NB.


Subject(s)
Neuroblastoma , Piwi-Interacting RNA , Child , Humans , Tumor Suppressor Protein p53/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , G1 Phase/genetics , Cell Proliferation/genetics , Signal Transduction/genetics , Cell Line, Tumor , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...