Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(1): 502-513, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38193423

ABSTRACT

Electric-induced surface-enhanced Raman scattering (E-SERS) has been widely studied for its flexible regulation of SERS after the substrate is prepared. However, the enhancement effect is not sufficiently high in the E-SERS technology reported thus far, and no suitable field of application exists. In this study, a highly sensitive thermoelectrically induced SERS substrate, Ag/graphene/ZnO (AGZ), was fabricated using ZnO nanoarrays (NRs), graphene, and Ag nanoparticles (NPs). Applying a temperature gradient to the ZnO NRs enhanced the SERS signals of the probe molecules by a factor of approximately 20. Theoretical and experimental results showed that the thermoelectric potential enables the simultaneous modulation of the Fermi energy level of graphene and the plasma resonance peak of Ag NPs, resulting in a double enhancement in terms of physical and chemical mechanisms. The AGZ substrate was then combined with a mask to create a wearable thermoelectrically enhanced SERS mask for collecting SARS-CoV-2 viruses and microplastics. Its SERS signal can be enhanced by the temperature gradient created between a body heat source (∼37 °C) and a cold environment. The suitability of this method for virus detection was also examined using a reverse transcription-polymerase chain reaction and SARS-CoV-2 virus antigen detection. This work offers new horizons for research of E-SERS, and its application potential for rapid detection of the SARS-CoV-2 virus and microplastics was also studied.


Subject(s)
COVID-19 , Graphite , Metal Nanoparticles , Zinc Oxide , Humans , SARS-CoV-2 , Metal Nanoparticles/chemistry , Microplastics , Plastics , Zinc Oxide/chemistry , Silver/chemistry , COVID-19/diagnosis
2.
Nat Commun ; 13(1): 206, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017522

ABSTRACT

Operation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo's criteria for a scalable quantum information processor.

3.
Nano Lett ; 20(9): 6306-6312, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32841034

ABSTRACT

A two-dimensional topological insulator (2DTI) has an insulating bulk and helical edges robust to nonmagnetic backscattering. While ballistic transport has been demonstrated in micron-scale 2DTIs, larger samples show significant backscattering and a nearly temperature-independent resistance of unclear origin. Spin polarization has been measured, however the degree of helicity is difficult to quantify. Here, we study 2DTI few-layer Na3Bi on insulating Al2O3. A nonlocal conductance measurement demonstrates edge conductance in the topological regime with an edge mean free path ∼100 nm. A perpendicular magnetic field suppresses spin-flip scattering in the helical edges, resulting in a giant negative magnetoresistance (GNMR) up to 80% at 0.9 T. Comparison to theory indicates >96% of scattering is helical spin scattering significantly exceeding the maximum (67%) expected for a nonhelical metal. GNMR, coupled with nonlocal measurements, thus provides an unambiguous experimental signature of helical edges that we expect to be generically useful in understanding 2DTIs.

SELECTION OF CITATIONS
SEARCH DETAIL
...