Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.247
Filter
1.
Heliyon ; 10(9): e30214, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707310

ABSTRACT

Background: Accumulating small unruptured intracranial aneurysms are detected due to the improved quality and higher frequency of cranial imaging, but treatment remains controversial. While surgery or endovascular treatment is effective for small aneurysms with a high risk of rupture, such interventions are unnecessary for aneurysms with a low risk of rupture. Consequently, it is imperative to accurately identify small aneurysms with a low risk of rupture. The purpose of this study was to develop a clinically practical model to predict small aneurysm ruptures based on a radiomics signature and clinical risk factors. Methods: A total of 293 patients having an aneurysm with a diameter of less than 5 mm, including 199 patients (67.9 %) with a ruptured aneurysm and 94 patients (32.1 %) without a ruptured aneurysm, were included in this study. Digital subtraction angiography or surgical treatment was required in all cases. Data on the clinical risk factors and the features on computed tomography angiography images associated with the aneurysm rupture status were collected simultaneously. We developed a clinical-radiomics model to predict aneurysm rupture status using multivariate logistic regression analysis. The combined clinical-radiomics model was constructed by nomogram analysis. The diagnostic performance, clinical utility, and model calibration were evaluated by operating characteristic curve analysis, decision curve analysis, and calibration analysis. Results: A combined clinical-radiomics model (Area Under Curve [AUC], 0.85; 95 % confidence interval [CI], 0.757-0.947) showed effective performance in the operating characteristic curve analysis. In the validation cohort, the performance of the combined model was better than that of the radiomics model (AUC, 0.75; 95 % CI, 0.645-0.865; Delong's test p-value = 0.01) and the clinical model (AUC, 0.74; 95 % CI, 0.625-0.851; Delong's test p-value <0.01) alone. The results of the decision curve, nomogram, and calibration analyses demonstrated the clinical utility and good fitness of the combined model. Conclusion: Our study demonstrated the effectiveness of a clinical-radiomics model for predicting rupture status in small aneurysms.

2.
ACS Omega ; 9(17): 19272-19281, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708284

ABSTRACT

Embedded silver nanoparticles (Ag NPs) within nanofibers represent a highly promising alternative to common antimicrobial materials, due to the combined effective biocidal properties of Ag NPs with the biocompatibility and environmental friendliness of biobased polymers. In this study, we presented a novel one-step route to fabricate biobased polyamide 56 (PA56) nanofibers embedded with uniform Ag NPs. The process involved mixing reactive silver ammonia with PA56 solutions and then using formic acid as a reducing agent. Continuous electrospinning resulted in solvent evaporation, yielding Ag NPs highly dispersed within PA56 nanonet fibrous structures (PA56/Ag). Characterization assays confirmed the successful impregnation of Ag NPs in PA56 nanofibers, with an average size of about 32.4 nm. PA56/Ag nanofibers also displayed suitable morphology, mechanical properties, and good biocompatibility in vitro. Moreover, their antimicrobial effectiveness was evaluated against Staphylococcus aureus and Escherichia coli. Collectively, the proposed PA56/Ag nanofibers possess desirable characteristics suitable for antimicrobial applications.

3.
Front Plant Sci ; 15: 1379562, 2024.
Article in English | MEDLINE | ID: mdl-38708390

ABSTRACT

To cope with phosphate (Pi) starvation, plants trigger an array of adaptive responses to sustain their growth and development. These responses are largely controlled at transcriptional levels. In Arabidopsis (Arabidopsis thaliana), PHOSPHATE RESPONSE 1 (PHR1) is a key regulator of plant physiological and transcriptional responses to Pi starvation. PHR1 belongs to a MYB-CC-type transcription factor family which contains 15 members. In this PHR1 family, PHR1/PHR1-like 1(PHL1) and PHL2/PHL3 form two distinct modules in regulating plant development and transcriptional responses to Pi starvation. PHL4 is the most closely related member to PHR1. Previously, using the phr1phl4 mutant, we showed that PHL4 is also involved in regulating plant Pi responses. However, the precise roles of PHL1 and PHL4 in regulating plant Pi responses and their functional relationships with PHR1 have not been clearly defined. In this work, we further used the phl1phl4 and phr1phl1phl4 mutants to perform comparative phenotypic and transcriptomic analyses with phr1, phr1phl1, and phr1phl4. The results showed that both PHL1 and PHL4 act redundantly and equally with PHR1 to regulate leaf senescence, Pi starvation induced-inhibition of primary root growth, and accumulation of anthocyanins in shoots. Unlike PHR1 and PHL1, however, the role of PHL4 in maintaining Pi homeostasis is negligible. In regulating transcriptional responses to Pi starvation at genomic levels, both PHL1 and PHL4 play minor roles when acts alone, however, they act synergistically with PHR1. In regulating Pi starvation-responsive genes, PHL4 also function less than PHL1 in terms of the number of the genes it regulates and the magnitude of gene transcription it affects. Furthermore, no synergistic interaction was found between PHL1 and PHL4 in regulating plant response to Pi starvation. Therefore, our results clarified the roles of PHL1 and PHL4 in regulating plant responses to Pi starvation. In addition, this work revealed a new function of these three transcription factors in regulating flowering time.

4.
Plant Physiol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709681

ABSTRACT

Cuticular wax is a protective layer on the aerial surfaces of land plants. In Arabidopsis (Arabidopsis thaliana), cuticular wax is mainly constituted of compounds derived from very-long-chain fatty acids (VLCFAs) with chain lengths longer than C28. CER2-LIKE (ECERIFERUM2-LIKE) proteins interact with CER6/KCS6 (ECERIFERUM6/ß-Ketoacyl-CoA Synthase6), the key enzyme of the fatty acid elongase complex, to modify its substrate specificity for VLCFA elongation past C28. However, the molecular regulatory mechanism of CER2-LIKE proteins remains unclear. Arabidopsis eceriferum19 (cer19) mutants display wax-deficient stems caused by loss of waxes longer than C28, indicating that CER19 may participate in the CER2-LIKE-mediated VLCFA elongation past C28. Using positional cloning and genetic complementation, we showed that CER19 encodes Acetyl-CoA Carboxylase1 (ACC1), which catalyzes the synthesis of malonyl-CoA, the essential substrate for the CER6/KCS6-mediated condensation reaction in VLCFA synthesis. We demonstrated that ACC1 physically interacts with CER2-LIKE proteins via split-ubiquitin yeast two-hybrid (SUY2H) and firefly luciferase complementation imaging (LCI) analysis. Additionally, heterologous expression in yeast and genetic analysis in Arabidopsis revealed that ACC1 affects CER2 activity to influence VLCFA elongation past C28. These findings imply that CER2-LIKE proteins might function as a link between ACC1 and CER6/KCS6 and subsequently enhance CER6/KCS6 binding to malonyl-CoA for further utilization in VLCFA elongation past C28. This information deepens our understanding of the complex mechanism of cuticular wax biosynthesis.

5.
Transplantation ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725107

ABSTRACT

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is a major cause of complications in clinical liver surgery. AXL receptor tyrosine kinase (AXL) is a member of the TAM receptor tyrosine kinase family (TYRO3, AXL, and MERTK). Our previous study has shown that AXL expression was markedly upregulated in liver transplantation patients. However, the underlying mechanism of AXL in hepatic I/R injury remains unclear. METHODS: A mouse liver warm I/R model and a primary hepatocyte hypoxia/reoxygenation model were established to investigate the role of AXL activation and ferroptosis in hepatic I/R injury by pretreating with recombinant mouse growth arrest-specific protein 6 (AXL activator) or R428 (AXL inhibitor). Moreover, we used LY294002 (phosphatidylinositol 3-kinase [PI3K] inhibitor) to evaluate the relationship between the PI3K/AKT (the Ser and Thr kinase AKT) pathway and ferroptosis in hepatic I/R injury. RESULTS: Hepatic I/R injury decreased phosphorylation AXL expression and enhanced ferroptosis in liver transplantation patients and hepatic I/R-subjected mice. AXL activation attenuated lipid peroxidation and ferroptosis in hepatic I/R injury in vivo and in vitro. Inhibition of AXL activation exacerbated liver pathological damage and liver dysfunction, as well as iron accumulation and lipid peroxidation in hepatic I/R injury. Mechanistically, activated growth arrest-specific protein 6/AXL and its downstream PI3K/AKT signaling pathway inhibited ferroptosis during hepatic I/R injury. CONCLUSIONS: AXL activation protects against hepatic I/R injury by preventing ferroptosis through the PI3K/AKT pathway. This study is the first investigation on the AXL receptor and ferroptosis, and activating AXL to mitigate ferroptosis may be an innovative therapeutic strategy to combat hepatic I/R injury.

8.
Plant Physiol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717740

ABSTRACT

The circadian system plays a pivotal role in facilitating the ability of crop plants to respond and adapt to fluctuations in their immediate environment effectively. Despite the increasing comprehension of PSEUDO-RESPONSE REGULATORs (PRRs) and their involvement in the regulation of diverse biological processes, including circadian rhythms, photoperiodic control of flowering, and responses to abiotic stress, the transcriptional networks associated with these factors in soybean (Glycine max (L.) Merr.) remain incompletely characterized. In this study, we provide empirical evidence highlighting the significance of GmPRR3b as a crucial mediator in regulating the circadian clock, drought stress response, and abscisic acid (ABA) signaling pathway in soybeans. A comprehensive analysis of DNA affinity purification sequencing and transcriptome data identified 795 putative target genes directly regulated by GmPRR3b. Among them, a total of 570 exhibited a significant correlation with the response to drought, and eight genes were involved in both the biosynthesis and signaling pathways of ABA. Notably, GmPRR3b played a pivotal role in the negative regulation of the drought response in soybeans by suppressing the expression of abscisic acid responsive element-binding factor 3 (GmABF3). Additionally, the overexpression of GmABF3 exhibited an increased ability to tolerate drought conditions, and it also restored the hypersensitive phenotype of the GmPRR3b overexpressor. Consistently, studies on the manipulation of GmPRR3b gene expression and genome editing in plants revealed contrasting reactions to drought stress. The findings of our study collectively provide compelling evidence that emphasizes the significant contribution of the GmPRR3b-GmABF3 module in enhancing drought tolerance in soybean plants. Moreover, the transcriptional network of GmPRR3b provides valuable insights into the intricate interactions between this gene and the fundamental biological processes associated with plant adaptation to diverse environmental conditions.

9.
Clin Epigenetics ; 16(1): 63, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725010

ABSTRACT

BACKGROUND: Decitabine (DAC), a DNA methyltransferase inhibitor, has shown efficacy combined with chemotherapy for relapsed or refractory (R/R) acute myeloid leukemia (AML) in adults, but less is known about its efficacy in children. Accordingly, we conducted a study which involved a priming regimen consisting of DAC with cladribine, cytarabine, and granulocyte-stimulating factor (DAC-CLAG) and compared the efficacy and safety of this regimen with CLAG alone. METHODS: A total of 39 R/R AML children who received the CLAG or DAC-CLAG regimen in Shanghai Children's Hospital were retrospectively enrolled in this non-randomized study. These regimens were studied sequentially over time. Twenty-two patients received CLAG from 2015, while 17 patients were administered epigenetic priming with DAC before CLAG from 2020. Patients were subsequently bridged to stem cell transplantation (SCT) or consolidation chemotherapy. Complete remission (CR) and adverse effects were analyzed by Fisher's exact test, and survival was analyzed by the Kaplan-Meier method. RESULTS: DAC-CLAG conferred a numerically higher CR compared to CLAG (70.59% vs 63.64%; P = 0.740). High CR rates occurred in patients with good cytogenetics (P = 0.029) and prior induction without cladribine (P = 0.099). The 1-year event-free survival (EFS) was 64.71% ± 11.59% and 63.31% ± 10.35% in the DAC-CLAG and CLAG group (P = 0.595), and 1-year overall survival (OS) was 81.45% ± 9.72% and 77.01% ± 9.04%, respectively (P = 0.265). The 1-year OS and EFS after SCT were higher in the DAC-CLAG than in the CLAG cohort (100% vs 92.31% ± 7.39%, P = 0.072; 92.31% ± 7.39% vs 85.71% ± 9.35%, P = 0.158). Univariate analysis revealed that a good prognosis included good cytogenetics (P = 0.002), non-complex karyotype (P = 0.056), CR on reinduction (P < 0.0001), and bridging to SCT (P = 0.0007). Use of a hypomethylating agent (P = 0.049) and bridging to SCT (P = 0.011) were independent prognostic factors. Grade 3/4 hematologic toxicity and infection were the main adverse events. CONCLUSIONS: DAC prior to the CLAG regimen improved remission in pediatric R/R AML, and was feasible and well tolerated. CLAG ± DAC as a salvage therapy prior to SCT induced improved survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Cladribine , Cytarabine , Decitabine , Epigenesis, Genetic , Leukemia, Myeloid, Acute , Humans , Decitabine/therapeutic use , Decitabine/administration & dosage , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Female , Child , Child, Preschool , Cladribine/therapeutic use , Cladribine/administration & dosage , Retrospective Studies , Cytarabine/therapeutic use , Cytarabine/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adolescent , Epigenesis, Genetic/drug effects , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/therapeutic use , Infant , Treatment Outcome , Remission Induction/methods
10.
J R Soc Interface ; 21(214): 20230625, 2024 May.
Article in English | MEDLINE | ID: mdl-38715322

ABSTRACT

Peer effects can directly or indirectly rely on interaction networks to drive people to follow ideas or behaviours triggered by a few individuals, and such effects can be largely improved by targeting the so-called influential individuals. In this article, we study the current most promising seeding strategy used in field experiments, the one-hop strategy, where the underlying interaction networks are generally too impractical or prohibitively expensive to be obtained, and propose an individual-centralized seeding approach to target influential seeds in information-limited networks. The presented strategy works by reasonable follow-up questions to respondents, such as Who do you think has more connections/friends?, and constructs the seeding set by those nodes with the most nominations. In this manner, the proposed method could acquire more information about the studied interaction network from the inference of respondents without surveying additional individuals. We evaluate our strategy on networks from various experimental datasets. Results show that the obtained seeds are much more influential compared to the one-hop strategy and other methods. We also show how the proposed approach could be implemented in field studies and potentially provide better interventions in real scenarios.


Subject(s)
Models, Theoretical , Humans
11.
Front Oncol ; 14: 1235630, 2024.
Article in English | MEDLINE | ID: mdl-38803531

ABSTRACT

Background: Many studies demonstrated the safety and efficacy of SBRT in the treatment of elderly patients with early-stage non-small cell lung cancer (NSCLC). However, those studies focused on patients with peripheral lung cancer. This study aimed to evaluate the clinical efficacy and toxicity of SBRT in elderly patients with stage I-II central NSCLC in single institution. Methods: From April 2009 to January 2020, a retrospective study was conducted on patients ≥ 65 years old with stage I-II NSCLC that was centrally localized and treated with SBRT at a single institution. Absolute C-reactive protein (CRP)/albumin ratio (CAR) and body mass index (BMI) recorded at pretreatment were analyzed. Endpoints included overall survival (OS), progression-free survival (PFS), cancer-specific death, noncancer-specific death, local progression (LP) and distant progression (DP). Results: Stereotactic body radiation treatment (SBRT) was administered to a total of 44 patients. The most common dose fractionation schedule was 60 Gy given in 5 fractions. The median PFS of the cohort was 31 months (95% CI, 19.47-42.53 months). The median OS of all patients was 69 months (95% CI, 33.8-104.2 months). The median time to noncancer-specific death was 54.5 months. The median time to cancer-specific death was 36 months. The cumulative incidences of cancer-specific death at 1 year, 5 years, and 10 years were 11.63% (95%CI, 4.2-23.23%), 42.99% (95%CI, 27.56-57.53%), and 65.94% (95%CI, 45.76-80.1%), respectively. pre-SBRT BMI of ≤ 22.77 (HR 4.60, 95% CI 1.84-11.51, P=0.001) and pre-SBRT CAR of ≤0.91 (HR 5.19, 95% CI 2.15-12.52, P<0.000) were significant predictors of higher OS on multivariable analysis. The median times to LP and DP were 10 months and 11 months, respectively. In terms of acute toxicity, grade 1 including cough (38.64%), radiation pneumonitis (29.55%), anemia (25%), and fatigue (20.45%) was often observed. There was no evidence of grade 4 or 5 acute toxicity. In terms of late toxicity, 2 patients developed grade 1 pulmonary fibrosis during follow-up. Conclusion: This study showed that SBRT can effectively control local tumor progression, and have acceptable toxicity for elderly patients with centrally located stage I-II NSCLC. Lower pre-SBRT BMI and lower pre-SBRT CAR were associated with a decreased risk of cancer-specific death.

12.
Ultrasonics ; 141: 107348, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38805953

ABSTRACT

Structural health monitoring (SHM) of in-service structures is becoming increasingly important. The fundamental shear horizontal (SH0) guided wave mode in plate-like structures shows great potential in damage detection due to its non-dispersive and in-plane vibration properties. In order to generate SH0 waves, a practical Lorentz force-based electromagnetic acoustic transducer (EMAT) was introduced in this study using the flexible circumferential printed circuit (CPC). The designed principle of CPC-EMAT was similar to that of the circumferential magnet array (CMA)-based EMAT. However, the structure of the CMA-EMAT is complex, and it is difficult to assemble for generating high frequency and uniformly distributed omnidirectional SH0 waves. Firstly, the performance of the CMA-EMAT with different numbers of magnets was investigated by finite element simulations. Then, the CPC was proposed to replace the CMA with an optimized designed on its size. The CPC-EMAT is easier to fabricate compared to the CMA-EMAT. Finally, experimental tests were conducted for systematic validations on the transducer properties. Simulation and experimental results show that the CPC-EMAT can successfully generate the desirable and acceptable omnidirectional SH0 waves. The proposed CPC-EMAT is anticipated to find widespread application in SH-typed guided wave-based SHM.

13.
Sci Rep ; 14(1): 12261, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806534

ABSTRACT

We accurately reconstruct the Local Field Potential time series obtained from anesthetized and awake rats, both before and during CO 2 euthanasia. We apply the Eigensystem Realization Algorithm to identify an underlying linear dynamical system capable of generating the observed data. Time series exhibiting more intricate dynamics typically lead to systems of higher dimensions, offering a means to assess the complexity of the brain throughout various phases of the experiment. Our results indicate that anesthetized brains possess complexity levels similar to awake brains before CO 2 administration. This resemblance undergoes significant changes following euthanization, as signals from the awake brain display a more resilient complexity profile, implying a state of heightened neuronal activity or a last fight response during the euthanasia process. In contrast, anesthetized brains seem to enter a more subdued state early on. Our data-driven techniques can likely be applied to a broader range of electrophysiological recording modalities.


Subject(s)
Algorithms , Brain , Animals , Brain/physiology , Rats , Wakefulness/physiology , Euthanasia , Male , Euthanasia, Animal/methods , Carbon Dioxide
14.
Nat Commun ; 15(1): 4476, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796523

ABSTRACT

Protein functions are characterized by interactions with proteins, drugs, and other biomolecules. Understanding these interactions is essential for deciphering the molecular mechanisms underlying biological processes and developing new therapeutic strategies. Current computational methods mostly predict interactions based on either molecular network or structural information, without integrating them within a unified multi-scale framework. While a few multi-view learning methods are devoted to fusing the multi-scale information, these methods tend to rely intensively on a single scale and under-fitting the others, likely attributed to the imbalanced nature and inherent greediness of multi-scale learning. To alleviate the optimization imbalance, we present MUSE, a multi-scale representation learning framework based on a variant expectation maximization to optimize different scales in an alternating procedure over multiple iterations. This strategy efficiently fuses multi-scale information between atomic structure and molecular network scale through mutual supervision and iterative optimization. MUSE outperforms the current state-of-the-art models not only in molecular interaction (protein-protein, drug-protein, and drug-drug) tasks but also in protein interface prediction at the atomic structure scale. More importantly, the multi-scale learning framework shows potential for extension to other scales of computational drug discovery.


Subject(s)
Computational Biology , Proteins , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Algorithms , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Machine Learning , Drug Interactions , Humans , Protein Binding
15.
J Dermatolog Treat ; 35(1): 2355976, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38797745

ABSTRACT

PURPOSE: Based on a potential shared pathophysiology tied to mast cell activity and neurogenic inflammation that may link pruritus and chronic cough (CC), this study, leveraging the All of Us database, examines the association between the two conditions. MATERIALS AND METHODS: A nested case-control comparison was used to examine the association, identifying cases with SNOMED codes 418363000 (pruritus) and 68154008 (CC). Matching was performed on a 1:4 ratio by age, sex, and ethnicity using the MatchIt package in R, followed by maximum likelihood method to estimate odds ratios (ORs) and 95% confidence intervals from 2x2 contingency tables. RESULTS: CC patients (n = 2,388) were more than twice as likely to be diagnosed with pruritus (OR: 2.65) and pruritus patients (n = 22,496) were more than twice as likely to be diagnosed with CC (OR: 2.57), than respective matched controls. CONCLUSIONS: These results highlight the potential bidirectional relationship between CC and pruritus, suggesting possible shared immune and neural pathways. Treatments like difelikefalin and nalbuphine that modulate these pathways, alongside P2X3 targeting agents, are emerging as potential therapeutic approaches for itch and chronic cough given the possible interconnected pathophysiology. This study's insights into the associations between pruritus and CC may pave the way for targeted therapeutic strategies that address their shared mechanisms.


Subject(s)
Cough , Pruritus , Humans , Male , Female , Pruritus/etiology , Case-Control Studies , Chronic Disease , Cough/etiology , Cough/physiopathology , Middle Aged , United States , Adult , Databases, Factual , Aged , Young Adult , Adolescent , Chronic Cough
17.
Front Plant Sci ; 15: 1375646, 2024.
Article in English | MEDLINE | ID: mdl-38807775

ABSTRACT

Introduction: Soybean, as a globally significant crop, has garnered substantial attention due to its agricultural importance. The utilization of molecular approaches to enhance grain yield in soybean has gained popularity. Methods: In this study, we conducted a genome-wide association study (GWAS) using 156 Chinese soybean accessions over a two-year period. We employed the general linear model (GLM) and the mixed linear model (MLM) to analyze three agronomic traits: pod number, grain number, and grain weight. Results: Our findings revealed significant associations between qgPNpP-98, qgGNpP-89 and qgHGW-85 QTLs and pod number, grain number, and grain weight, respectively. These QTLs were identified on chromosome 16, a region spanning 413171bp exhibited associations with all three traits. Discussion: These QTL markers identified in this study hold potential for improving yield and agronomic traits through marker-assisted selection and genomic selection in breeding programs.

18.
Gen Psychiatr ; 37(3): e101389, 2024.
Article in English | MEDLINE | ID: mdl-38808176

ABSTRACT

Background: Anorexia nervosa (AN) has been characterised as a psychiatric disorder associated with increased control. Currently, it remains difficult to predict treatment response in patients with AN. Their cognitive abilities are known to be resistant to treatment. It has been established that the frontoparietal control network (FPCN) is the direct counterpart of the executive control network. Therefore, the resting-state brain activity of the FPCN may serve as a biomarker to predict treatment response in AN. Aims: The study aimed to investigate the association between resting-state functional connectivity (RSFC) of the FPCN, clinical symptoms and treatment response in patients with AN. Methods: In this case-control study, 79 female patients with AN and no prior treatment from the Shanghai Mental Health Center and 40 matched healthy controls (HCs) were recruited from January 2015 to March 2022. All participants completed the Questionnaire Version of the Eating Disorder Examination (version 6.0) to assess the severity of their eating disorder symptoms. Additionally, RSFC data were obtained from all participants at baseline by functional magnetic resonance imaging. Patients with AN underwent routine outpatient treatment at the 4th and 12th week, during which time their clinical symptoms were evaluated using the same measures as at baseline. Results: Among the 79 patients, 40 completed the 4-week follow-up and 35 completed the 12-week follow-up. The RSFC from the right posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (dlPFC) increased in 79 patients with AN vs 40 HCs after controlling for depression and anxiety symptoms. By multiple linear regression, the RSFC of the PPC to the inferior frontal gyrus was found to be a significant factor for self-reported eating disorder symptoms at baseline and the treatment response to cognitive preoccupations about eating and body image, after controlling for age, age of onset and body mass index. The RSFC in the dlPFC to the middle temporal gyrus and the superior frontal gyrus may be significant factors in the treatment response to binge eating and loss of control/overeating in patients with AN. Conclusions: Alterations in RSFC in the FPCN appear to affect self-reported eating disorder symptoms and treatment response in patients with AN. Our findings offer new insight into the pathogenesis of AN and could promote early prevention and treatment.

19.
Biomater Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808535

ABSTRACT

Expression of concern for 'A hypoxia-dissociable siRNA nanoplatform for synergistically enhanced chemo-radiotherapy of glioblastoma' by Yandong Xie, et al., Biomater. Sci., 2022, 10, 6791-6803, https://doi.org/10.1039/D2BM01145J.

20.
Article in English | MEDLINE | ID: mdl-38781065

ABSTRACT

Active learning seeks to achieve strong performance with fewer training samples. It does this by iteratively asking an oracle to label newly selected samples in a human-in-the-loop manner. This technique has gained increasing popularity due to its broad applicability, yet its survey papers, especially for deep active learning (DAL), remain scarce. Therefore, we conduct an advanced and comprehensive survey on DAL. We first introduce reviewed paper collection and filtering. Second, we formally define the DAL task and summarize the most influential baselines and widely used datasets. Third, we systematically provide a taxonomy of DAL methods from five perspectives, including annotation types, query strategies, deep model architectures, learning paradigms, and training processes, and objectively analyze their strengths and weaknesses. Then, we comprehensively summarize the main applications of DAL in natural language processing (NLP), computer vision (CV), data mining (DM), and so on. Finally, we discuss challenges and perspectives after a detailed analysis of current studies. This work aims to serve as a useful and quick guide for researchers in overcoming difficulties in DAL. We hope that this survey will spur further progress in this burgeoning field.

SELECTION OF CITATIONS
SEARCH DETAIL
...