Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Accid Anal Prev ; 192: 107272, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683567

ABSTRACT

Transportation-related harms have developed into a social disease, threatening public safety and health in China. We aimed to increase the global understanding of traffic safety and public health in China from past knowledge, current status, and future directions by collecting, collating, and analyzing the Chinese traffic incidents reported in the published literature. A systematic search of China National Knowledge Infrastructure, Weipu, and published articles referenced in PubMed, Web of Science and ProQuest between January 1, 1988 and April 30, 2023 was performed. China encountered the first recorded traffic accident as early as three thousand years ago in the Shang Dynasty. An increase in vehicle capacity and velocity increased the traffic risks during the transition from rickshaws and livestock to motor vehicles in varying traffic environments. Humans are not only the decisive factor of a large number of vehicles, traffic routes, and environmental variables, but also the victims at the end and starting point of traffic accidents. Injuries (mechanical force, burns) and diseases (traffic-related air pollution, noise) caused by traffic activities not only threaten public health, but also cause risks to safe driving. Analysis of traffic activities and biomarkers promotes the treatment of traffic injuries in ethology and medicine. China prepared for the construction of healthy transportation in the "decade of road safety" toward an estimation of worldwide road traffic injuries in 2030. Improvement of traffic safety concerning public health under the "Outline of the National Comprehensive Three-dimensional Transportation Network Planning" in China will propel the realization of worldwide traffic environmental advancement.


Subject(s)
Accidents, Traffic , Public Health , Humans , Accidents, Traffic/prevention & control , China , Health Status , Knowledge
2.
Materials (Basel) ; 16(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37629906

ABSTRACT

The materials with grain size gradient variation on the surface, which were prepared with mechanical-induced severe plastic deformation, always show high resistance to high and low cycle fatigue and frictional wear because of their good strength-ductility synergy. The ultrasonic surface rolling treatment (USRT) has the advantages of high processing efficiency, good surface quality, and large residual compressive stress introduced to the surface after treatment. The USRT was used to prepare aluminum alloy (AA7075) samples with a surface gradient structure; meanwhile, the microstructural evolution mechanism of the deformation layers on the gradient structure was studied with XRD, SEM, and TEM. The microstructure with gradient distribution of grain size and dislocation density formed on the surface of AA7075 aluminum alloy after USRT. The surface layer consists of nanocrystals with random orientation distribution, and high-density dislocation cells and subgrains formed in some grains in the subsurface layer, while the center of the material is an undeformed coarse-grained matrix. The results show that the dislocation slip dominates the grain refinement process, following the continuous cutting and refinement of dislocation cells, subgrains, and fragmentation of the second precipitates. This study systematically clarified the mechanism of grain refinement and nanocrystallization on the surface of high-strength aluminum alloys and laid a theoretical foundation for further research on mechanical behavior and surface friction and wear properties of high-strength non-ferrous materials with gradient structure.

3.
Talanta ; 258: 124377, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36863068

ABSTRACT

A dual-mode biosensor constructed based on photoelectrochemical (PEC) and electrochemical (EC) property was developed for assaying circulating tumor DNA (ctDNA), which is commonly used for triple-negative breast cancer diagnosis. Ionic liquid functionalized two-dimensional Nd-MOF nanosheets were successfully synthesized through a template-assisted reagent substituting reaction. Nd-MOF nanosheets integrated with gold nanoparticles (AuNPs) were able to improve photocurrent response and supply active sites for assembling sensing elements. To achieve selective detection of ctDNA, thiol-functionalized capture probes (CPs) were immobilized on the Nd-MOF@AuNPs modified glassy carbon electrode surface, thereby generating a "signal-off" photoelectrochemical biosensor for ctDNA under visible light irradiation. After the recognition of ctDNA, ferrocene-labeled signaling probes (Fc-SPs) were introduced into the biosensing interface. After hybridization between ctDNA and Fc-SPs, the oxidation peak current of Fc-SPs generated from square wave voltammetry can be employed as a "signal-on" electrochemical signal for ctDNA quantification. Under the optimized conditions, a linear relationship was obtained to the logarithm of ctDNA concentration in between 1.0 fmol L-1 to 10 nmol L-1 for the PEC model and 1.0 fmol L-1 to 1.0 nmol L-1 for the EC model. The dual-mode biosensor can provide accurate results for ctDNA assays, effectively eliminating the probable occurrence of false-positive or false-negative results in single-model assays. By switching DNA probe sequences, the proposed dual-mode biosensing platform can serve as a strategy for detecting other DNAs and possesses broad applications in bioassay and early disease diagnosis.


Subject(s)
Biosensing Techniques , Ionic Liquids , Metal Nanoparticles , Gold/chemistry , Ionic Liquids/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
4.
Nature ; 610(7933): 661-666, 2022 10.
Article in English | MEDLINE | ID: mdl-36198794

ABSTRACT

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

5.
Adv Sci (Weinh) ; 9(32): e2203115, 2022 11.
Article in English | MEDLINE | ID: mdl-36031410

ABSTRACT

The oral and upper respiratory tracts are closely linked anatomically and physiologically with the lower respiratory tract and lungs, and the influence of oral and upper respiratory microbes on the lung microbiota is increasingly being recognized. However, the ecological process and individual heterogeneity of the oral and upper respiratory tract microbes shaping the lung microbiota remain unclear owing to the lack of controlled analyses with sufficient sample sizes. Here, the microbiomes of saliva, nasal cavity, oropharyngeal area, and bronchoalveolar lavage samples are profiled and the shaping process of multisource microbes on the lung microbiota is measured. It is found that oral and nasal microbial inputs jointly shape the lung microbiota by occupying different ecological niches. It is also observed that the spread of oral microbes to the lungs is heterogeneous, with more oral microbes entering the lungs being associated with decreased lung function and increased lung proinflammatory cytokines. These results depict the external shaping process of lung microbiota and indicate the great value of oral samples, such as saliva, in monitoring and assessing lung microbiota status in clinical settings.


Subject(s)
Microbiota , Bronchoalveolar Lavage Fluid , Microbiota/physiology , Lung , Bronchoalveolar Lavage/methods , Health Status
6.
Sci Total Environ ; 838(Pt 3): 156193, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35613644

ABSTRACT

During the COVID-19 pandemic, the use of chlorine-based disinfectants has surged due to their excellent performance and cost-effectiveness in intercepting the spread of the virus and bacteria in water and air. Many authorities have demanded strict chlorine dosage for disinfection to ensure sufficient chlorine residual for inactivating viruses and bacteria while not posing harmful effects to humans as well as the environment. Reliable chlorine sensing techniques have therefore become the keys to ensure a balance between chlorine disinfection efficiency and disinfection safety. Up to now, there is still a lack of comprehensive review that collates and appraises the recently available techniques from a practical point of view. In this work, we intend to present a detailed overview of the recent advances in monitoring chlorine in both dissolved and gaseous forms aiming to present valuable information in terms of method accuracy, sensitivity, stability, reliability, and applicability, which in turn guides future sensor development. Data on the analytical performance of different techniques and environmental impacts associated with the dominated chemical-based techniques are thus discussed. Finally, this study concludes with highlights of gaps in knowledge and trends for future chlorine sensing development. Due to the increasing use of chlorine in disinfection and chemical synthesis, we believe the information present in this review is a relevant and timely resource for the water treatment industry, healthcare sector, and environmental organizations.


Subject(s)
COVID-19 , Disinfectants , Water Purification , Bacteria , COVID-19/epidemiology , Chlorides , Chlorine , Disinfection/methods , Halogenation , Humans , Pandemics , Reproducibility of Results , Water Purification/methods
7.
Chemosphere ; 303(Pt 1): 134944, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35577135

ABSTRACT

Good practices in controlling ammonia produced from the predominant agricultural contributor, crop farming, are the most direct yet effective approaches for mitigating ammonia emissions and further relieving air pollution. Of all the practices that have been investigated in recent decades, fertilizer amendment technologies are garnering increased attention as the low nitrogen use efficiency in most applied quick-acting fertilizers is the main cause of high ammonia emissions. This paper systematically reviews the fertilizer amendment technologies and associated mechanisms that have been developed for ammonia control, especially the technology development of inorganic additives-based complex fertilizers, coating-based enhanced efficiency fertilizers, organic waste-based resource fertilizers and microbial agent and algae-based biofertilizers, and their corresponding mechanisms in farmland properties shifting towards inhibiting ammonia volatilization and enhancing nitrogen use efficiency. The systematic analysis of the literature shows that both enhanced efficiency fertilizers technique and biofertilizers technique present outstanding ammonia inhibition performance with an average mitigation efficiency of 54% and 50.1%, respectively, which is mainly attributed to the slowing down in release and hydrolysis of nitrogen fertilizer, the enhancement in the adsorption and retention of NH4+/NH3 in soil, and the promotion in the microbial consumption of NH4+ in soil. Furthermore, a combined physical and chemical means, namely membrane/film-based mulching technology, for ammonia volatilization inhibition is also evaluated, which is capable of increasing the resistance of ammonia volatilization. Finally, the review addresses the challenges of mitigating agricultural ammonia emissions with the aim of providing an outlook for future research.


Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , Farms , Fertilizers/analysis , Nitrogen/analysis , Soil/chemistry , Technology , Volatilization
8.
Med Devices (Auckl) ; 14: 119-131, 2021.
Article in English | MEDLINE | ID: mdl-33911903

ABSTRACT

OBJECTIVE: This study is the largest clinical study of noninvasive Abdominal wall tension (AWT) measurement with a tensiometer to date. It also initially applies a polynomial regression equation to analyze the correlation between AWT measurement and intravesical pressure (IVP) measurement and remarkably finds interesting changes between different IVP intervals and AWT. METHODS: Critically ill patients who were treated in the intensive care unit (ICU) of Daping Hospital, Army Medical University, from August 30, 2018, to June 30, 2020, and met the inclusion criteria were prospectively included in this study. The patients were divided into an intra-abdominal hypertension group and a non-intra-abdominal hypertension group and an abdominal infection group and no abdominal infection group. AWT and IVP were measured at 9 points on the abdominal wall on the first day after admission to the ICU. The correlations between AWTs and IVP were analyzed, and the role of AWT in the diagnosis of complications of abdominal infection and the prediction of adverse prognosis were analyzed. RESULTS: A total of 127 patients were included. The average AWT and IVP were 2.77±0.38 N/mm and 12.31±7.01 mmHg, respectively, on the first day of admission. There was a positive correlation between AWT and IVP (correlation coefficient r = 0.706, p < 0.05). The polynomial regression model was AWT= -1.616×10-3 IVP2 +8.323×10-2 IVP+2.094. The cutoff value of the sensitivity and specificity of AWT for the diagnosis of abdominal infection was 2.57 N/mm. Furthermore, AWT = 2.57 N/mm had the best diagnostic efficiency, which was better than that of IAH and lactate. CONCLUSION: There was a correlation between AWT and IVP. AWT measurement was helpful in the diagnosis of IAH and abdominal infection complications and can therefore serve as a new method for the clinical diagnosis of IVP and abdominal infection.

9.
Med Sci Monit ; 27: e928676, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33621218

ABSTRACT

BACKGROUND Different responses to identical trauma may be related to the genetic background of individuals, but the molecular mechanism is unclear. In this study we investigated the heterogeneity of trauma in mice and the potential biological explanations for the differences. MATERIAL AND METHODS Compared with other organs, the pathological response of the lung after injury is the earliest and most serious. We used C57BL/6 and BALB/C mice to explore the genetic background of different responses to trauma in the lung. We measured mortality rate, pulmonary microvascular permeability, and Cxcl15 gene expression in BALB/C and C57BL/6 mice before and after blast-wave injury. Microvascular permeability was measured using a fluorescent tracer, and Cxcl15 gene expression level and expression distribution were measured using fluorogenic probe quantitative polymerase chain reaction and northern blot. RESULTS C57BL/6 mice showed lower mortality rates and pulmonary microvascular permeability than BALB/C mice after blast-wave injury; there was no significant difference in the permeability before blast-wave injury. The Cxcl15 gene was expressed specifically in the lung tissue of mice. The level of Cxcl15 expression in BALB/C mice was higher than in C57BL/6 mice before and after injury, and the variation trend of Cxcl15 expression level after injury was significantly different between BALB/C and C57BL/6 mice. CONCLUSIONS Our results indicated that BALB/C and C57BL/6 mice had significant heterogeneity in posttraumatic response in terms of mortality and degree of lung damage. The differences in genetic factors such as Cxcl15 may have played a role in this heterogeneity.


Subject(s)
Lung Injury/physiopathology , Lung/pathology , Wounds and Injuries/genetics , Animals , Blast Injuries/genetics , Blast Injuries/physiopathology , Capillary Permeability/genetics , Capillary Permeability/physiology , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Gene Expression/genetics , Lung/metabolism , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
10.
Neuroepidemiology ; : 1-9, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33621971

ABSTRACT

BACKGROUND: Prior studies have suggested that head injury might be a potential risk factor of amyotrophic lateral sclerosis (ALS). However, the association has not been well established. We aimed to provide a synopsis of the current understanding of head injury's role in ALS. METHODS: We performed a systematic search in PubMed for observational studies that quantitatively investigated the association between head injury and ALS risk published before April 10, 2020. We used a random-effects model to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Fourteen eligible articles including 10,703 cases and 2,159,324 controls were selected in current meta-analysis. We found that head injury was associated with an increased risk of ALS (OR = 1.38, 95% CI: 1.20-1.60) and the association was slightly stronger concerning severe head injury and ALS risk (OR = 1.69, 95% CI: 1.27-2.23). Considering the number of head injuries (N) and ALS risk, the association was weak (OR = 1.23, 95% CI: 1.10-1.37, N = 1; OR = 1.29, 95% CI: 0.89-1.86, N ≥ 2). In addition, a strong association with ALS risk was found in individuals who suffered head injury <1 year (OR = 4.05, 95% CI: 2.79-5.89), and when the time lag was set at 1-5, 5-10, and >10 years, the pooled OR was 1.13, 1.35, and 1.10, respectively. CONCLUSION: This meta-analysis indicates that head injury, especially severe head injury, could increase ALS risk. Although a strong association is found between head injury <1 year and ALS risk in the current study, this result suggests a possibility of reverse causation.

11.
Article in English | MEDLINE | ID: mdl-33423565

ABSTRACT

Background: Trauma especially head trauma is considered a potential risk factor of amyotrophic lateral sclerosis (ALS), but their association has not been well established. We aimed to determine the association of prior trauma with ALS risk. Methods: This study was performed according to the Meta-Analysis of Observational Studies in Epidemiology guideline to assess related literatures, and a random-effects model was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results: Twenty-nine eligible articles involving 18,390 cases and 6,519,391 controls were included in this meta-analysis. The results showed that trauma was associated with an increased risk of ALS (pooled OR = 1.51, 95% CI: 1.32-1.73). Besides, patients with trunk trauma, head trauma and lower limb trauma had an increased risk of ALS, whereas no evidence suggested that upper limb trauma and spine trauma could increase ALS risk. Considering the number of traumatic events, the association between trauma and ALS risk was significant for patients with repeated trauma events (pooled OR = 1.21, 95% CI: 1.07-1.38). The results showed that individuals with a history of trauma within 5 years were more likely to be diagnosed with ALS (pooled OR = 1.84, 95% CI: 1.56-2.17). Importantly, both old trauma and very old trauma were found to be associated with an increased risk of ALS (pooled OR = 1.24, 95% CI: 1.12-1.38; pooled OR = 1.28, 95% CI: 1.10-1.49; respectively). Conclusions: This meta-analysis indicated that trauma could increase ALS risk, which may be applied for the clinicians to tailor targeted treatment regimens and make prophylactic strategies for ALS in traumatic patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Craniocerebral Trauma , Amyotrophic Lateral Sclerosis/epidemiology , Craniocerebral Trauma/complications , Craniocerebral Trauma/epidemiology , Humans , Observational Studies as Topic , Odds Ratio , Risk Factors
12.
Mil Med Res ; 7(1): 29, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32522241

ABSTRACT

BACKGROUND: Civilian explosion blast injury is more frequent in developing countries, including China. However, the incidence, casualties, and characteristics of such incidents in China are unknown. METHODS: This is a retrospective analysis of the State Administration of Work Safety database. Incidents during a period from January 1, 2000 to April 30, 2017 were included in the analysis. The explosions were classified based on the number of deaths into extraordinarily major, major, serious and ordinary type. Descriptive statistics was used to analyze the incidence and characteristics of the explosions. Correlation analysis was performed to examine the potential correlations among various variables. RESULTS: Data base search identified a total of 2098 explosions from 2000 to 2017, with 29,579 casualties: 15,788 deaths (53.4%), 12,637 injured (42.7%) and 1154 missing (3.9%). Majority of the explosions were serious type (65.4%). The number of deaths (39.5%) was also highest with the serious type (P = 0.006). The highest incidence was observed in the fourth quarter of the year (October to December), and at 9:00-11:00 am and 4:00-6:00 pm of the day. The explosions were most frequent in coal-producing provinces (Guizhou and Shanxi Province). Coal mine gas explosions resulted majority of the deaths (9620, 60.9%). The number of explosion accidents closely correlated with economic output (regional economy and national GDP growth rate) (r = - 0.372, P = 0.040; r = 0.629, P = 0.028). CONCLUSIONS: The incidence and civilian casualties due to explosions remain unacceptabe in developing China. Measures that mitigate the risk factors are of urgently required.


Subject(s)
Blast Injuries/complications , Explosions/statistics & numerical data , Blast Injuries/epidemiology , Chi-Square Distribution , China/epidemiology , Humans , Incidence , Injury Severity Score , Occupational Health/standards , Occupational Health/statistics & numerical data , Retrospective Studies , Risk Factors
13.
Sci Bull (Beijing) ; 65(22): 1888-1893, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-36738053

ABSTRACT

Thermoelectric materials (TMs) can uniquely convert waste heat into electricity, which provides a potential solution for the global energy crisis that is increasingly severe. Bulk Cu2Se, with ionic conductivity of Cu ions, exhibits a significant enhancement of its thermoelectric figure of merit zT by a factor of ~3 near its structural transition around 400 K. Here, we show a systematic study of the electronic structure of Cu2Se and its temperature evolution using high-resolution angle-resolved photoemission spectroscopy. Upon heating across the structural transition, the electronic states near the corner of the Brillouin zone gradually disappear, while the bands near the centre of Brillouin zone shift abruptly towards high binding energies and develop an energy gap. Interestingly, the observed band reconstruction well reproduces the temperature evolution of the Seebeck coefficient of Cu2Se, providing an electronic origin for the drastic enhancement of the thermoelectric performance near 400 K. The current results not only bridge among structural phase transition, electronic structures and thermoelectric properties in a condensed matter system, but also provide valuable insights into the search and design of new generation of thermoelectric materials.

14.
Anim Nutr ; 5(3): 270-277, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31528729

ABSTRACT

Two experiments were conducted to investigate the effects of phytonutrients (PN) on growth performance, antioxidant status, intestinal morphology, and nutrient utilization of birds fed low energy diets. In Exp. 1, a total of 1,440 one-day-old Ross 308 male broiler chickens were randomly divided into 3 treatment groups, with 16 replicates per treatment (48 pens; 30 birds per pen). Birds in treatment 1 were fed diets with normal energy content (NE). Birds in treatment 2 were fed NE diet but with 60 kcal removed (LE). Birds in treatment 3 were assigned to LE diet supplemented with PN (LE + PN). Results indicated that LE diet increased feed conversion ratio (FCR) compared with NE from d 1 to 38, while LE + PN diet prevented this response (P = 0.02). At d 26, birds in the LE + PN group had the highest ileal and jejunal villus height to crypt depth (VH:CD) ratio. At d 39, PN supplementation improved ileal and jejunal VH:CD ratio, compared with LE group. Moreover, birds fed PN diets received a better economic profit. In Exp. 2, 360 one-day-old Ross 308 male broiler chickens were used in a metabolism study. The treatments used in Exp. 2 were the same as those in Exp.1, with 4 replicates (pens) and 30 birds in each replicate. Dietary apparent metabolism energy (AME), energy and protein digestibility were determined between 21 and 28 d of age. Results showed that chickens fed LE + PN diet tended to have greater AME (P = 0.02) and nitrogen-corrected apparent metabolism energy (AMEn) (P = 0.03) than birds fed LE diets. It was concluded that LE + PN showed a potential advantage to improve feed conversion and gut health of broilers, as well as economic profits.

15.
Sensors (Basel) ; 19(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336606

ABSTRACT

A molecularly imprinted sensor was fabricated for alpha-fetoprotein (AFP) using an ionic liquid as a functional monomer. Ionic liquid possesses many excellent characteristics which can improve the sensing performances of the imprinted electrochemical sensor. To demonstrate this purpose, 1-[3-(N-cystamine)propyl]-3-vinylimidazolium tetrafluoroborate ionic liquid [(Cys)VIMBF4] was synthesized and used as a functional monomer to fabricate an AFP imprinted polymerized ionic liquid film on a gold nanoparticle modified glassy carbon electrode (GCE) surface at room temperature. After removing the AFP template, a molecularly imprinted electrochemical sensor was successfully prepared. The molecularly imprinted sensor exhibits excellent selectivity towards AFP, and can be used for sensitive determination of AFP. Under the optimized conditions, the imprinted sensor shows a good linear response to AFP in the concentration range of 0.03 ng mL-1~5 ng mL-1. The detection limit is estimated to be 2 pg mL-1.


Subject(s)
Electrochemical Techniques/instrumentation , Electrodes , Ionic Liquids/chemistry , Molecular Imprinting/methods , alpha-Fetoproteins/analysis , Electrochemical Techniques/methods , Equipment Design , Gold , Hydrogen-Ion Concentration , Limit of Detection , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Polymerization , Reproducibility of Results , Sensitivity and Specificity , Temperature , Time Factors
16.
Arch Anim Nutr ; 73(4): 324-337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31192701

ABSTRACT

This experiment was conducted to evaluate the effects of different sources and levels of trace elements on growth performance, carcass composition and mineral excretion levels of broilers. In a completely randomised experimental design, 900 one-day-old male Ross-308 broilers were assigned to 5 treatments, with 6 replicates of 30 birds each. The control group (CITE) was fed with a basal diet containing regular inclusion levels of inorganic trace elements. Treatment groups were supplied with reduced levels (30% and 50% of the regular level) of inorganic (ITE) or organic trace elements (OTE), respectively. Groups 50% ITE, 30% OTE and 50% OTE diets had equivalent average daily gain (ADG), average daily feed intake (ADFI), feed to gain ratio (F/G ratio) and mortality rate compared with group CITE in any phase. However, compared with group CITE chicks in group 30% ITE have lower ADG and ADFI and higher F/G ratio. The carcass yields were not affected by dietary treatments. Compared with group CITE, in groups 30% ITE, 50% ITE, 30% OTE and 50% OTE the shear force values of the breast muscle were only 71.8%, 83.4%, 63.5% and 59.4% (p < 0.05), respectively. Birds received diets containing reduced levels of trace elements had diminished excretions of Mn and Zn throughout the entire period (p < 0.01). In conclusion, the reduced supplementation of trace elements had no or slightly negative impact on growth performance, carcass yield and meat quality, but decreased faecal mineral excretion. Moreover, the trace element supply as OTE played a limited role on performance and excretion and was only partly beneficial for animal performance in case the trace element supply was reduced to 30%.


Subject(s)
Chickens/physiology , Diet/veterinary , Intestinal Elimination , Minerals/metabolism , Trace Elements/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Chickens/growth & development , Copper/administration & dosage , Copper/chemistry , Copper/metabolism , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Feces/chemistry , Iron/administration & dosage , Iron/chemistry , Iron/metabolism , Male , Manganese/administration & dosage , Manganese/chemistry , Manganese/metabolism , Meat/analysis , Random Allocation , Trace Elements/administration & dosage , Zinc/administration & dosage , Zinc/chemistry , Zinc/metabolism
17.
Clin Anat ; 32(3): 337-347, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30461075

ABSTRACT

A feasible and optimal axis of biomechanical and anatomic significance in axial lumbosacral interbody fusion (AxiaLIF) was designed. Using the image dataset of an adult volunteer, two groups of finite element (FE) models of the AxiaLIF, lumbosacral anterior column fixation (ACF) models and middle column fixation (MCF) models with different bone graft fusion degrees, were prospectively established, and their biomechanical differences were comparatively predicted. In addition, 3D reconstruction was performed by retrospectively collecting CT data from pelvises in 60 adult cases. Their anatomic parameters relating to two groups of models were digitally measured and statistically compared. Numerical analysis revealed that the load and the maximum stress on the screw as well as the maximum stress difference between the screw and peripheral tissues in the MCF model were reduced compared with the ACF model. These indices of both models all decreased markedly in response to the increase in the disc fusion degree. Statistical analysis revealed that the effective fixed length of the sacrum in the MCF model was increased compared with the ACF model (P < 0.05). The surgical dissection distance of presacral vessels and nerves from the axis to sacrum of the MCF model was reduced compared with the ACF model (P < 0.05). The feasible and optimal axis of biomechanical and anatomic significance of the AxiaLIF is similar to the axis of the MCF model. Disc bone graft fusions plus axial screw fixations of middle column could strengthen the biomechanical stability of the AxiaLIF model. Clin. Anat. 32:337-347, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Imaging, Three-Dimensional/methods , Lumbar Vertebrae/anatomy & histology , Lumbosacral Region/anatomy & histology , Models, Anatomic , Adult , Biomechanical Phenomena , Bone Screws , Computer Simulation , Female , Humans , Male , Middle Aged , Pelvic Bones/anatomy & histology , Pelvic Bones/diagnostic imaging , Spinal Fusion/methods , Tomography, X-Ray Computed
18.
Toxicol Lett ; 301: 90-97, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30423366

ABSTRACT

Caffeine is a substance that is consumed worldwide, and it may exert neuroprotective effects against various cerebral insults, including neurotrauma, which is the most prevalent injury among military personnel. To investigate the effects of caffeine on high-intensity blast wave-induced severe blast injury in mice, three different paradigms of caffeine were applied to male C57BL/6 mice with severe whole body blast injury (WBBI). The results demonstrated that chronic caffeine treatment alleviated blast-induced traumatic brain injury (bTBI); however, both chronic and acute caffeine treatments exacerbated blast-induced lung injuries and, more importantly, increased both the cumulative and time-segmented mortalities postinjury. Interestingly, withdrawing caffeine intake preinjury resulted in favorable outcomes in mortality and lung injury, similar to the findings in water-treated mice, and had the trend to attenuate brain injury. These findings demonstrated that although drinking coffee or caffeine preparations attenuated blast-induced brain trauma, these beverages may place personnel in the battlefield at high risk of casualties, which will help us re-evaluate the therapeutic strategy of caffeine application, particularly in multiple-organ-trauma settings. Furthermore, these findings provided possible strategies for reducing the risk of casualties with caffeine consumption, which may help to change the coffee-drinking habits of military personnel.


Subject(s)
Blast Injuries/drug therapy , Brain Injuries, Traumatic/drug therapy , Caffeine/pharmacology , Neuroprotective Agents/pharmacology , Animals , Blast Injuries/mortality , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
19.
Mikrochim Acta ; 185(12): 570, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30506429

ABSTRACT

Tungsten disulfide (WS2) nanosheets were obtained by exfoliating WS2 bulk crystals in N-methylpyrrolidone by ultrasonication. Gold nanoparticles (GNPs) were synthesized by in-situ ultrasonication of sodium citrate and HAuCl4 while fabricating the WS2 nanosheets. In this way, the GNPs were self-assembled on WS2 nanosheets to form a GNPs/WS2 nanocomposite through interaction between sulfur and gold atoms. The photoelectrochemical response of WS2 nanosheets is significantly enhanced after integration of the GNPs. The GNPs/WS2 nanocomposite was coated onto a glassy carbon electrode (GCE) to construct a sensing interface which then was modified with an antibody against the carcinoembryonic antigen (CEA) to obtain a photoelectrochemical immunosensor for CEA. Under optimized conditions, the decline in relative photocurrent is linearly related to the logarithm of the CEA concentration in the range from 0.001 to 40 ng mL-1. The detection limit is 0.5 pg mL-1 (at S/N = 3). The assay is sensitive, selective, stable and reproducible. It was applied to the determination of CEA in clinical serum samples. Graphical abstract Schematic presentation of the fabrication of Au/WS2 nanocomposites by in-situ ultrasonication and the procedure for the CEA photoelectrochemical immunosensor preparation, and the photocurrent response towards the carcinoembryonic antigen.


Subject(s)
Biosensing Techniques/methods , Carcinoembryonic Antigen/analysis , Gold/chemistry , Immunoassay/methods , Metal Nanoparticles/chemistry , Photochemical Processes , Sonication , Sulfides/chemistry , Tungsten Compounds/chemistry , Electrochemistry , Electrodes
20.
Chin J Traumatol ; 21(5): 277-280, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30279039

ABSTRACT

Military Brain Science is a cutting-edge innovative science that uses potential military application as the guidance. It was preliminarily divided into 9 aspects by authors: understanding the brain, protecting the brain, monitoring the brain, injuring the brain, interfering with the brain, repairing the brain, enhancing the brain, simulating the brain and arming the brain. In this review, we attempt to propose the concept, content and meaning of the Military Brain Science, with the hope to provide some enlightenment and understanding of the research area.


Subject(s)
Biomedical Research/trends , Brain Injuries/prevention & control , Brain/physiology , Military Personnel , Military Science , Armed Conflicts , China , Female , Forecasting , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...