Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Appl Microbiol Biotechnol ; 102(2): 733-742, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29151159

ABSTRACT

Enantioselective hydrolysis of epoxides by epoxide hydrolase (EH) is one of the most attractive approaches for the synthesis of chiral epoxides. So far, attempts to develop an efficient epoxide hydrolase -mediated biotransformation have been limited by either the low activity or insufficient enantioselectivity of epoxide hydrolase. In this study, iterative saturation mutagenesis (ISM) of epoxide hydrolase from Agrobacterium radiobacter AD1 (ArEH) was performed for efficient production of (R)-epichlorohydrin. Six amino acid residues, I108, A110, D131, I133, T247, and G245, were selected for site saturation mutagenesis, and a sequential combination of positive mutants using ISM was constructed. Targeted mutagenesis generated five mutants (T247K, I108L, D131S, T247K/I108L, and T247K/I108L/D131S) with improved activity and enantioselectivity. Kinetics analysis showed that the best mutant, T247K/I108L/D131S, exhibited a 4.5-fold higher catalytic efficiency (k cat/K m) value and a 2.1-fold higher enantioselectivity (E value) towards epichlorohydrin than the wild-type (WT) enzyme. Molecular docking computations support the source of notably improved enantioselectivity. In addition, the triple mutant also displayed a significantly enhanced thermostability, with > 8-fold longer half-life at 50 °C than WT. A gram-scale kinetic resolution of (R,S)-epichlorohydrin was performed using T247K/I108L/D131S mutant as biocatalyst, affording a (R)-epichlorohydrin yield of 40.2% (> 99.9% enantiomeric excess) and an average productivity of 1410 g L-1 d-1. The engineered T247K/I108L/D131S variant is a promising biocatalyst for the enzymatic synthesis of (R)-epichlorohydrin.


Subject(s)
Agrobacterium tumefaciens/enzymology , Epichlorohydrin/metabolism , Epoxide Hydrolases/metabolism , Agrobacterium tumefaciens/genetics , Biocatalysis , Hydrolysis , Kinetics , Models, Molecular , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Stereoisomerism
2.
Biotechnol Lett ; 38(9): 1579-85, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27379653

ABSTRACT

OBJECTIVE: To improve the operational stability and reusability of an epoxide hydrolase (EH) for the biosynthesis of optically active epoxides. RESULTS: A covalently immobilization strategy was employed to improve the stability of Agrobacterium radiobacter EH by using ethylenediamine (EDA)-functionalised epoxy resin LX-1000EP as carrier. Under the optimal conditions, the activity recovery of immobilized enzyme was 72 % and the specific activity was 634 U/g. Immobilized EH exhibited significantly enhanced thermal stability with a half-life of more than 6.8-fold at 50 °C than that of the free enzyme. A gram-scale kinetic resolution of (R,S)-epichlorohydrin using immobilized preparation as biocatalyst was performed and (R)-epichlorohydrin was obtained with 35 % yield and 99 % enantiomeric excess. The immobilized EH showed good operational stability and even after six reactions, it retained >85 % of the initial activity. CONCLUSION: The operational stability and recyclability of immobilized EH on an EDA-functionalized epoxy supports demonstrated its potential for producing (R)-epichlorohydrin.


Subject(s)
Agrobacterium tumefaciens/enzymology , Enzymes, Immobilized/metabolism , Epichlorohydrin/metabolism , Epoxide Hydrolases/metabolism , Ethylenediamines/chemistry , Epichlorohydrin/chemistry , Epoxide Hydrolases/chemistry
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(6): 1530-4, 2010 Jun.
Article in Chinese | MEDLINE | ID: mdl-20707144

ABSTRACT

Structure and association of asphaltenes from coal direct hydroliquefaction were studied by fluorescence spectrometry and UV-Vis absorption spectrometry in this paper. The results indicate that asphaltene is aromatic mixtures mainly containing naphthalene nucleus and shows strong fluorescent characteristic. The forming of exciplex between asphaltene and solvent results in the red shift of fluorescence peak and fluorescence quenching of asphaltene that increases with the polarity and electron acceptability. The self-aggregation of asphaltene is formed by non-covalent bond interaction, so that the asphaltene liquefied at higher temperture that shows high aromaticity has stronger association than that liquefied at lower temperature. Aggregation of asphaltene has been found to be a gradual process, in which there is no critical aggregation constant observed, and the inflection point of the plot of apparent fluorescence intensity as a function of asphaltene concentration varies with the excitation wavelength.

4.
J Agric Food Chem ; 51(9): 2555-8, 2003 Apr 23.
Article in English | MEDLINE | ID: mdl-12696936

ABSTRACT

Ginsenoside, the major active component in Panax ginseng, which has been used in traditional Chinese medicine, contains a series of derivatives of the triterpene dammarane being attached by some sugar moieties. To clarify the relationship between the structure of ginsenoside and its properties, 11 individual ginsenosides, along with the central structures of ginsenoside, protopanaxadiol and protopanaxatriol, are used in 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced hemolysis of human erythrocytes, a good experimental model to research free radical induced membrane damage and to evaluate the antioxidative or prooxidative activities of various antioxidants conveniently. It is found that the central structures of ginsenosides, either protopanaxadiol or protopanaxatriol, play a prooxidative role in AAPH-induced hemolysis of erythrocytes. As to the individual ginsenoside, if there are no sugar moieties attached to the 20-position of the triterpene dammarane, the ginsenoside acts as a prooxidant, that is, Rg3, Rh2, and Rg2. A glucose attached to the 6-position instead of the 20-position sugar moieties can make the ginsenoside an antioxidant, that is, Rh1. The antioxidants among ginsenosides follow two different mechanisms that can be expressed mathematically by the Boltzmann equation, that is, Rc and Rb1, and a polynomial equation, that is, Re, Rd, R1, Rg1, Rb3, and Rh1. The orders of antioxidative ability are Rc > Rb1 and Re > Rd > R1 > Rg1 > Rb3 > Rh1, respectively.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Erythrocytes/drug effects , Ginsenosides/chemistry , Ginsenosides/pharmacology , Panax/chemistry , Amidines/pharmacology , Antioxidants/metabolism , Dose-Response Relationship, Drug , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Free Radical Scavengers/pharmacology , Ginsenosides/metabolism , Hemolysis/drug effects , Oxidants/pharmacology , Structure-Activity Relationship
5.
Biochim Biophys Acta ; 1572(1): 58-66, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12204333

ABSTRACT

Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC(50)) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC(50) is Rb3 - Rb1<Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.


Subject(s)
Antioxidants/pharmacology , Erythrocytes/drug effects , Saponins/pharmacology , Amidines/antagonists & inhibitors , Drug Synergism , Ginsenosides , Hemolysis/drug effects , Humans , Inhibitory Concentration 50 , Membrane Lipids , Molecular Structure , Sapogenins/pharmacology , Saponins/chemistry , Time Factors , Triterpenes/pharmacology , alpha-Tocopherol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...