Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.593
Filter
1.
Bioelectrochemistry ; 159: 108748, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38824746

ABSTRACT

In this study, we have designed an electrochemical biosensor based on topological material Bi2Se3 for the sensitive detection of SARS-CoV-2 in the COVID-19 pandemic. Flake-shaped Bi2Se3 was obtained directly from high-quality single crystals using mechanical exfoliation, and the single-stranded DNA was immobilized onto it. Under optimal conditions, the peak current of the differential pulse voltammetry method exhibited a linear relationship with the logarithm of the concentration of target-complementary-stranded DNA, ranging from 1.0 × 10-15 to 1.0 × 10-11 M, with a detection limit of 3.46 × 10-16 M. The topological material Bi2Se3, with Dirac surface states, enhanced the signal-to-interference plus noise ratio of the electrochemical measurements, thereby improving the sensitivity of the sensor. Furthermore, the electrochemical sensor demonstrated excellent specificity in recognizing RNA. It can detect complementary RNA by amplifying and transcribing the initial DNA template, with an initial DNA template concentration ranging from 1.0 × 10-18 to 1.0 × 10-15 M. Furthermore, the sensor also effectively distinguished negative and positive results by detecting splitting-synthetic SARS-CoV-2 pseudovirus with a concentration of 1 copy/µL input. Our work underscores the immense potential of the electrochemical sensing platform based on the topological material Bi2Se3 in the detection of pathogens during the rapid spread of acute infectious diseases.

2.
Adv Sci (Weinh) ; : e2309003, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828764

ABSTRACT

Applying lattice strain to thin films, a critical factor to tailor their properties such as stabilizing a structural phase unstable at ambient pressure, generally necessitates heteroepitaxial growth to control the lattice mismatch with substrate. Therefore, while homoepitaxy, the growth of thin film on a substrate made of the same material, is a useful method to fabricate high-quality thin films, its application to studying strain-induced structural phases is limited. Contrary to this general belief, here the quasi-homoepitaxial growth of Cs and Rb thin films is reported with substantial in-plane compressive strain. This is achieved by utilizing the alkali-metal layer existing in bulk crystal of kagome metals AV3Sb5 (A = Cs and Rb) as a structural template. The angle-resolved photoemission spectroscopy measurements reveal the formation of metallic quantum well states and notable thickness-dependent quasiparticle lifetime. Comparison with density functional theory calculations suggests that the obtained thin films crystalize in the face-centered cubic structure, which is typically stable only under high pressure in bulk crystals. These findings provide a useful approach for synthesizing highly strained thin films by quasi-homoepitaxy, and pave the way for investigating many-body interactions in Fermi liquids with tunable dimensionality.

3.
World J Gastrointest Surg ; 16(4): 1195-1202, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690044

ABSTRACT

BACKGROUND: Percutaneous transhepatic stent placement has become a common strategy for the postoperative treatment of portal vein (PV)/superior mesenteric veins (SMV) stenosis/occlusion. It has been widely used after liver transplantation surgery; however, reports on stent placement for acute PV/SMV stenosis after pancreatic surgery within postoperative 3 d are rare. CASE SUMMARY: Herein, we reported a case of intestinal edema and SMV stenosis 2 d after pancreatic surgery. The patient was successfully treated using stent grafts. Although the stenosis resolved after stent placement, complications, including bleeding, pancreatic fistula, bile leakage, and infection, made the treatment highly challenging. The use of anticoagulants was adjusted multiple times to prevent venous thromboembolism and the risk of bleeding. After careful treatment, the patient stabilized, and stent placement effectively managed postoperative PV/SMV stenosis. CONCLUSION: Stent placement is effective and feasible for treating acute PV/SMV stenosis after pancreatic surgery even within postoperative 3 d.

4.
BMC Health Serv Res ; 24(1): 605, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720277

ABSTRACT

BACKGROUND: Distal radius fractures (DRFs) have become a public health problem for all countries, bringing a heavier economic burden of disease globally, with China's disease economic burden being even more acute due to the trend of an aging population. This study aimed to explore the influencing factors of hospitalization cost of patients with DRFs in traditional Chinese medicine (TCMa) hospitals to provide a scientific basis for controlling hospitalization cost. METHODS: With 1306 cases of DRFs patients hospitalized in 15 public TCMa hospitals in two cities of Gansu Province in China from January 2017 to 2022 as the study object, the influencing factors of hospitalization cost were studied in depth gradually through univariate analysis, multiple linear regression, and path model. RESULTS: Hospitalization cost of patients with DRFs is mainly affected by the length of stay, surgery and operation, hospital levels, payment methods of medical insurance, use of TCMa preparations, complications and comorbidities, and clinical pathways. The length of stay is the most critical factor influencing the hospitalization cost, and the longer the length of stay, the higher the hospitalization cost. CONCLUSIONS: TCMa hospitals should actively take advantage of TCMb diagnostic modalities and therapeutic methods to ensure the efficacy of treatment and effectively reduce the length of stay at the same time, to lower hospitalization cost. It is also necessary to further deepen the reform of the medical insurance payment methods and strengthen the construction of the hierarchical diagnosis and treatment system, to make the patients receive reasonable reimbursement for medical expenses, thus effectively alleviating the economic burden of the disease in the patients with DRFs.


Subject(s)
Hospital Costs , Hospitalization , Length of Stay , Medicine, Chinese Traditional , Radius Fractures , Humans , China , Male , Female , Middle Aged , Medicine, Chinese Traditional/economics , Aged , Radius Fractures/economics , Radius Fractures/therapy , Hospital Costs/statistics & numerical data , Length of Stay/economics , Length of Stay/statistics & numerical data , Hospitalization/economics , Adult , Hospitals, Public/economics , Wrist Fractures
5.
Cancer Cell Int ; 24(1): 168, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734657

ABSTRACT

BACKGROUND: "Disulfide death," a form of cellular demise, is triggered by the abnormal accumulation of intracellular disulfides under conditions of glucose deprivation. However, its role in the prognosis of glioma remains undetermined. Therefore, the main objective of this study is to establish prognostic signature based on disulfide death-related genes (DDRGs) and to provide new solutions in choosing the effective treatment of glioma. METHODS: The RNA transcriptome, clinical information, and mutation data of glioma samples were sourced from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), while normal samples were obtained from the Genotype-Tissue Expression (GTEx). DDRGs were compiled from previous studies and selected through differential analysis and univariate Cox regression analysis. The molecular subtypes were determined through consensus clustering analysis. Further, LASSO analysis was employed to select characteristic genes, and subsequently, a risk model comprising seven DDRGs was constructed based on multivariable Cox analysis. Kaplan-Meier survival curves were employed to assess survival differences between high and low-risk groups. Additionally, functional analyses (GO, KEGG, GSEA) were conducted to explore the potential biological functions and signaling pathways of genes associated with the model. The study also explored immune checkpoint (ICP) genes, immune cell infiltration levels, and immune stromal scores. Finally, the effect of Importin-4(IPO4) on glioma has been further confirmed through RT-qPCR, Western blot, and cell functional experiments. RESULTS: 7 genes associated with disulfide death were obtained and two subgroups of patients with different prognosis and clinical characteristics were identified. Risk signature was subsequently developed and proved to serve as an prognostic predictor. Notably, the high-risk group exhibited an immunosuppressive microenvironment characterized by a high concentration of M2 macrophages and regulatory T cells (Tregs). In contrast, the low-risk group showed lower half-maximal inhibitory concentration (IC50) values. Therefore, patients in the high-risk group may benefit more from immunotherapy, while patients in the low-risk group may benefit more from chemotherapy. In addition, in vitro experiments have shown that inhibition of the expression of IPO4 leads to a significant reduction in the proliferation, migration, and invasion of glioma cells. CONCLUSION: This study identified two glioma subtypes and constructed a prognostic signature based on DDRGs. The signature has the potential to optimize the selection of patients for immune- and chemotherapy and provided a potential therapeutic target for glioma.

6.
Nature ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750364

ABSTRACT

The interplay among frustrated lattice geometry, non-trivial band topology and correlation yields rich quantum states of matter in kagome systems1,2. A series of recent members in this family, AV3Sb5 (A = K, Rb or Cs), exhibit a cascade of symmetry-breaking transitions3, involving the 3Q chiral charge ordering4-8, electronic nematicity9,10, roton pair density wave11 and superconductivity12. The nature of the superconducting order is yet to be resolved. Here we report an indication of dynamic superconducting domains with boundary supercurrents in intrinsic CsV3Sb5 flakes. The magnetic field-free superconducting diode effect is observed with polarity modulated by thermal histories, suggesting that there are dynamic superconducting order domains in a spontaneous time-reversal symmetry-breaking background. Strikingly, the critical current exhibits double-slit superconductivity interference patterns when subjected to an external magnetic field. The characteristics of the patterns are modulated by thermal cycling. These phenomena are proposed as a consequence of periodically modulated supercurrents flowing along certain domain boundaries constrained by fluxoid quantization. Our results imply a time-reversal symmetry-breaking superconducting order, opening a potential for exploring exotic physics, for example, Majorana zero modes, in this intriguing topological kagome system.

7.
BMC Oral Health ; 24(1): 500, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724912

ABSTRACT

BACKGROUND: Teeth identification has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. Accurately identifying teeth is a vital aspect of dental education and clinical practice, but can be challenging due to the anatomical similarities between categories. In this study, we aim to explore the possibility of using a deep learning model to classify isolated tooth by a set of photographs. METHODS: A collection of 5,100 photographs from 850 isolated human tooth specimens were assembled to serve as the dataset for this study. Each tooth was carefully labeled during the data collection phase through direct observation. We developed a deep learning model that incorporates the state-of-the-art feature extractor and attention mechanism to classify each tooth based on a set of 6 photographs captured from multiple angles. To increase the validity of model evaluation, a voting-based strategy was applied to refine the test set to generate a more reliable label, and the model was evaluated under different types of classification granularities. RESULTS: This deep learning model achieved top-3 accuracies of over 90% in all classification types, with an average AUC of 0.95. The Cohen's Kappa demonstrated good agreement between model prediction and the test set. CONCLUSIONS: This deep learning model can achieve performance comparable to that of human experts and has the potential to become a valuable tool for dental education and various applications in accurately identifying isolated tooth.


Subject(s)
Deep Learning , Tooth , Humans , Tooth/anatomy & histology , Tooth/diagnostic imaging , Photography, Dental/methods
8.
Adv Colloid Interface Sci ; 328: 103179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754212

ABSTRACT

Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.

9.
Cells ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786049

ABSTRACT

Plant structure-related agronomic traits like plant height and leaf size are critical for growth, development, and crop yield. Defining the types of genes involved in regulating plant structure size is essential for the molecular-assisted breeding of peppers. This research conducted comparative transcriptome analyses using Capsicum baccatum germplasm HNUCB0112 and HNUCB0222 and their F2 generation as materials. A total of 6574 differentially expressed genes (DEGs) were detected, which contain 379 differentially expressed transcription factors, mainly including transcription factor families such as TCP, WRKY, AUX/IAA, and MYB. Seven classes of DEGs were annotated in the plant hormone signal transduction pathway, including indole acetic acid (IAA), gibberellin (GA), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). The 26 modules were obtained by WGCNA analysis, and the MEpink module was positively correlated with plant height and leaf size, and hub genes associated with plant height and leaf size were anticipated. Differential genes were verified by qRT-PCR, which was consistent with the RNA-Seq results, demonstrating the accuracy of the sequencing results. These results enhance our understanding of the developmental regulatory networks governing pepper key traits like plant height and leaf size and offer new information for future research on the pepper plant architecture system.


Subject(s)
Capsicum , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Signal Transduction , Transcriptome , Capsicum/genetics , Capsicum/growth & development , Capsicum/anatomy & histology , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Transcriptome/genetics , Signal Transduction/genetics , Metabolome/genetics , Gene Expression Profiling , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Life Sci ; 348: 122717, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38744419

ABSTRACT

The loss or dysfunction of pancreatic ß-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged ß-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive ß-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of ß-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of ß-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate ß-cell genetic programs for generating alternative ß-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in ß-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.


Subject(s)
Cell Differentiation , Insulin-Secreting Cells , RNA, Untranslated , Tissue Engineering , Insulin-Secreting Cells/metabolism , Tissue Engineering/methods , Humans , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Hydrogels
11.
J Hazard Mater ; 474: 134703, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38805817

ABSTRACT

Graphitic carbon nitride has gained considerable attention as a visible-light photocatalyst. However, its photocatalytic efficiency is restricted by its limited capacity for absorbing visible light and swift recombination of charge carriers. To overcome this bottleneck, we fabricated an atomic Fe-dispersed ultrathin carbon nitride (Fe-UTCN) photocatalyst via one-step thermal polymerization. Fe-UTCN showed high efficiency in the photodegradation of acetaminophen (APAP), achieving > 90 % elimination within 60-min visible light irradiation. The anchoring of Fe atoms improved the photocatalytic activity of UTCN by narrowing the bandgap from 2.50 eV to 2.33 eV and suppressing radiative recombination. Calculations by density functional theory revealed that the Fe-N4 sites (adsorption energy of - 3.10 eV) were preferred over the UTCN sites (adsorption energy of - 0.18 eV) for the adsorption of oxygen and the subsequent formation of O2•-, the dominant reactive species in the degradation of APAP. Notably, the Fe-UTCN catalyst exhibited good stability after five successive runs and was applicable to complex water matrices. Therefore, Fe-UTCN, a noble-metal-free photocatalyst, is a promising candidate for visible light-driven water decontamination.

12.
Nano Lett ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808683

ABSTRACT

Wearable sensors are experiencing vibrant growth in the fields of health monitoring systems and human motion detection, with comfort becoming a significant research direction for wearable sensing devices. However, the weak moisture-wicking capability of sensor materials leads to liquid retention, severely restricting the comfort of the wearable sensors. This study employs a pattern-guided alignment strategy to construct microhill arrays, endowing triboelectric materials with directional moisture-wicking capability. Within 2.25 s, triboelectric materials can quickly and directionally remove the droplets, driven by the Laplace pressure differences and the wettability gradient. The directional moisture-wicking triboelectric materials exhibit excellent pressure sensing performance, enabling rapid response/recovery (29.1/37.0 ms), thereby achieving real-time online monitoring of human respiration and movement states. This work addresses the long-standing challenge of insufficient moisture-wicking driving force in flexible electronic sensing materials, holding significant implications for enhancing the comfort and application potential of electronic skin and wearable electronic devices.

13.
Sci Total Environ ; 932: 172811, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38701918

ABSTRACT

Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.


Subject(s)
Chickens , Eggs , Insecticides , Pyrazoles , Animals , Pyrazoles/analysis , Insecticides/analysis , Eggs/analysis , Risk Assessment , Female , Animal Feed/analysis , Food Contamination/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring
14.
J Neuroinflammation ; 21(1): 138, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802927

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a significant cause of mortality in patients with sepsis. Despite extensive research, its exact cause remains unclear. Our previous research indicated a relationship between non-hepatic hyperammonemia (NHH) and SAE. This study aimed to investigate the relationship between NHH and SAE and the potential mechanisms causing cognitive impairment. In the in vivo experimental results, there were no significant abnormalities in the livers of mice with moderate cecal ligation and perforation (CLP); however, ammonia levels were elevated in the hippocampal tissue and serum. The ELISA study suggest that fecal microbiota transplantation in CLP mice can reduce ammonia levels. Reduction in ammonia levels improved cognitive dysfunction and neurological impairment in CLP mice through behavioral, neuroimaging, and molecular biology studies. Further studies have shown that ammonia enters the brain to regulate the expression of aquaporins-4 (AQP4) in astrocytes, which may be the mechanism underlying brain dysfunction in CLP mice. The results of the in vitro experiments showed that ammonia up-regulated AQP4 expression in astrocytes, resulting in astrocyte damage. The results of this study suggest that ammonia up-regulates astrocyte AQP4 expression through the gut-brain axis, which may be a potential mechanism for the occurrence of SAE.


Subject(s)
Aquaporin 4 , Astrocytes , Brain-Gut Axis , Hyperammonemia , Sepsis-Associated Encephalopathy , Animals , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Aquaporin 4/biosynthesis , Astrocytes/metabolism , Hyperammonemia/metabolism , Sepsis-Associated Encephalopathy/metabolism , Male , Brain-Gut Axis/physiology , Mice, Inbred C57BL , Ammonia/metabolism , Ammonia/blood , Brain/metabolism , Fecal Microbiota Transplantation
15.
Int J Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38818685

ABSTRACT

BACKGROUND: Portal vein stent placement is used for portal vein stenosis. However, reports on post-pancreatic surgery cases are rare. Whether antithrombotic therapy should be administered remains controversial. In this paper, we reviewed current data to evaluate the influence of antithrombosis on stent patency after pancreatic surgery. MATERIALS AND METHODS: This systematic review and meta-analysis compared studies in which patients did or did not receive antithrombotic therapy after portal vein stent placement. We compared patency after stent placement and complication rate. RESULTS: There were 22 (n=207) studies in which patients received antithrombotic therapy and 8 (n=61) in which patients did not receive therapy. Antithrombotic agents, such as aspirin, clopidogrel, heparin, and warfarin, were used. The overall patency rates were similar between the groups (79.2% in the antithrombosis group vs. 88.0% in the non-antithrombosis group). Subgroup analyses included those for the etiology of stenosis, types of antithrombotic agents, acute or chronic stenosis, and causes of stent stenosis. None revealed a significant difference between the patency rates in the antithrombosis and non-antithrombosis groups. However, bleeding complications only occurred in patients who received antithrombotic therapy. CONCLUSION: There is no significant benefit of antithrombotic therapy after portal vein stent placement following pancreatic surgery. Antithrombotic therapy should be performed with caution because it may cause complications, such as bleeding.

16.
Vaccines (Basel) ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793753

ABSTRACT

BACKGROUND: The escalating complexity of the COVID-19 epidemic underscores the need for heightened attention to booster vaccinations. This study aims to examine the changing trend in the public's intention to receive the second COVID-19 booster vaccination over time and the associated factors following the COVID-19 policy optimization in China. METHOD: Eight cross-sectional surveys utilizing SMS questionnaire links were conducted in Guangzhou, China, from December 2022 to April 2023. The Mann-Kendall test was employed to analyze the trend in intentions to receive the second booster vaccination across the survey time. Adjusted and multivariate logistic analyses were used to analyze the factors associated with vaccination intention. Parallel analyses were performed for two subgroups with different COVID-19 infection statuses. RESULTS: A total of 9860 respondents were surveyed in the eight rounds, of which 8048 completed the first booster vaccination and were included in the analysis. The overall COVID-19 infection rate was 60.0% (4832/8048), while the overall vaccination intention was 72.2% (5810/8048) among respondents. The vaccination intention exhibited a significant declining trend over time, decreasing from 81.5% in December 2022 to 52.2% in April 2023. An adjusted logistic regression analysis revealed that anxiety and depression were negatively associated with an intention to receive the second booster vaccination, while COVID-19-related preventive behaviors and a high engagement in COVID-19-related information were positively associated with an intention to receive the second booster vaccination. A subgroup analysis revealed that the association between psychological and behavioral characteristics and vaccination intention remained relatively stable among individuals with different histories of COVID-19 infections. CONCLUSION: There was a significant decline in the intention to receive the second booster vaccination following the optimization of the COVID policy in China. Our findings emphasize the urgency of the second booster vaccination and provide a foundation for the development of tailored interventions to enhance and sustain vaccination intention among the public.

17.
Curr Med Imaging ; 20(1): e15734056306197, 2024.
Article in English | MEDLINE | ID: mdl-38778599

ABSTRACT

Cervical lymph node metastasis is an important determinant of cancer stage and the selection of an appropriate treatment plan for patients with head and neck cancer. Therefore, metastatic cervical lymph nodes should be effectively differentiated from lymphoma, tuberculous lymphadenitis, and other benign lymphadenopathies. The aim of this work is to describe the performance of Doppler ultrasound and superb microvascular imaging (SMI) in evaluating blood flow information of cervical lymph nodes. In addition, the features of flow imaging in metastatic lymph nodes, lymphoma, and tuberculous lymphadenitis were described. Compared with Doppler ultrasound, SMI, the latest blood flow imaging technology, could detect more blood flow signals because the sensitivity, specificity, and accuracy of SMI in the diagnosis of cervical lymph node disease were higher. This article summarizes the value of Doppler ultrasound and SMI in evaluating cervical lymph node diseases and focuses on the diagnostic performance of SMI.


Subject(s)
Lymph Nodes , Lymphatic Metastasis , Neck , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/blood supply , Neck/blood supply , Neck/diagnostic imaging , Lymphatic Metastasis/diagnostic imaging , Ultrasonography, Doppler/methods , Head and Neck Neoplasms/diagnostic imaging , Microvessels/diagnostic imaging , Tuberculosis, Lymph Node/diagnostic imaging , Sensitivity and Specificity
18.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695063

ABSTRACT

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Subject(s)
Antineoplastic Agents , Mutation , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/chemistry , Rats , Drug Discovery
19.
Article in English | MEDLINE | ID: mdl-38630566

ABSTRACT

Identifying links within biological networks is important in various biomedical applications. Recent studies have revealed that each node in a network may play a unique role in different links, but most link prediction methods overlook distinctive node roles, hindering the acquisition of effective link representations. Subgraph-based methods have been introduced as solutions but often ignore shared information among subgraphs. To address these limitations, we propose a Subgraph-aware Graph Kernel Neural Network (SubKNet) for link prediction in biological networks. Specifically, SubKNet extracts a subgraph for each node pair and feeds it into a graph kernel neural network, which decomposes each subgraph into a combination of trainable graph filters with diversity regularization for subgraph-aware representation learning. Additionally, node embeddings of the network are extracted as auxiliary information, aiding in distinguishing node pairs that share the same subgraph. Extensive experiments on five biological networks demonstrate that SubKNet outperforms baselines, including methods especially designed for biological networks and methods adapted to various networks. Further investigations confirm that employing graph filters to subgraphs helps to distinguish node roles in different subgraphs, and the inclusion of diversity regularization further enhances its capacity from diverse perspectives, generating effective link representations that contribute to more accurate link prediction.

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 561-567, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660867

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and risk factors of cytomegalovirus(CMV) and Epstein-Barr virus(EBV) co-reactivation after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and its influence on prognosis. METHODS: The clinical data of 222 patients who received allo-HSCT from January 2015 to December 2020 were collected, and the patients were divided into groups according to the occurrence of CMV and EBV infection. Kaplan-Meier method was used for survival analysis, and Cox proportional hazard regression model was used to analyze the risk factors of co-reactivation of CMV and EBV. RESULTS: After allo-HSCT, there were 30 patients with co-reactivation of CMV and EBV (CMV++EBV+ group), 101 patients with CMV viremia (CMV+ group), 149 patients with EBV viremia (EBV+ group), and 28 patients with CMV and EBV inactivation (CMV-+ EBV- group). Compared with the other groups, the incidence of acute graft-versus-host disease (aGVHD) and hemorrhagic cystitis (HC) was higher in CMV++ EBV+ groups (53.3% vs 42.6%, 36.9%, 17.9%, P < 0.001; 36.7% vs 32.7%, 22.8%, 10.7%, P =0.042). The incidence of post-transplant lymphoproliferative disease (PTLD) in CMV++ EBV+ group was similar to CMV+ group and EBV+ group (3.3% vs 3.0%, 3.4%, P =0.811). Univariate and multivariate analysis showed that the persistent time of CMV and EBV after transplantation were independent risk factors for co-reactivation of CMV and EBV. Compared with the other groups, the 2-year overall survival (OS) rate and 2-year disease-free survival (DFS) rate of patients in CMV++EBV+ group were lower (46.7% vs 74.9%, 83.4%, 71.4%, P < 0.001; 46.7% vs 70.9%, 79.5%, 69.9%, P =0.002), and 2-year non-recurrence mortality (NRM) was higher (48.2% vs 22%, 13.6%, 18.7%, P <0.001). CONCLUSION: The persistent time of CMV and EBV after transplantation are independent risk factors for patients with co-reactivation of CMV and EBV. Patients with co-reactivation of CMV and EBV had lower OS and DFS rate and higher NRM, suggesting that the clinical prognosis of the patients are worse.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Herpesvirus 4, Human , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Risk Factors , Graft vs Host Disease , Prognosis , Virus Activation , Female , Male , Viremia
SELECTION OF CITATIONS
SEARCH DETAIL
...