Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Ren Fail ; 46(1): 2356023, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785317

ABSTRACT

Glycyrrhizin (GL) has immunoregulatory effects on various inflammatory diseases including hepatitis and nephritis. However, the mechanisms underlying the anti-inflammatory effect of GL on renal inflammation are not fully understood. Hepatorenal syndrome (HRS) is a functional acute renal impairment that occurs in severe liver disease, and we found that kidney injury also occurs in Con A-induced experimental hepatitis in mice. We previously found that GL can alleviate Con A-induced hepatitis by regulating the expression of IL-25 in the liver. We wanted to investigate whether GL can alleviate Con A-induced nephritis by regulating IL-25. IL-25 regulates inflammation by modulating type 2 immune responses, but the mechanism by which IL-25 affects kidney disease remains unclear. In this study, we found that the administration of GL enhanced the expression of IL-25 in renal tissues; the latter promoted the generation of type 2 macrophages (M2), which inhibited inflammation in the kidney caused by Con A challenge. IL-25 promoted the secretion of the inhibitory cytokine IL-10 by macrophages but inhibited the expression of the inflammatory cytokine IL-1ß by macrophages. Moreover, IL-25 downregulated the Con A-mediated expression of Toll-like receptor (TLR) 4 on macrophages. By comparing the roles of TLR2 and TLR4, we found that TLR4 is required for the immunoregulatory effect of IL-25 on macrophages. Our data revealed that GL has anti-inflammatory effects on Con A-induced kidney injury and that the GL/IL-25/M2 axis participates in the anti-inflammatory process. This study suggested that GL is a potential therapeutic for protecting against acute kidney injury.


Subject(s)
Disease Models, Animal , Glycyrrhizic Acid , Kidney , Macrophages , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 2/metabolism , Interleukins/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Interleukin-10/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Interleukin-1beta/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/drug therapy , Hepatorenal Syndrome/metabolism , Mice, Inbred C57BL , Nephritis/drug therapy , Nephritis/metabolism , Nephritis/etiology , Nephritis/prevention & control
2.
Acta Pharmacol Sin ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589687

ABSTRACT

Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.

3.
Adv Healthc Mater ; : e2400406, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683036

ABSTRACT

Neoadjuvant radiotherapy, a preoperative intervention regimen for reducing the stage of primary tumors and surgical margins, has gained increasing attention in the past decade. However, radiation-induced skin damage during neoadjuvant radiotherapy exacerbates surgical injury, remarkably increasing the risk of refractory wounds and compromising the therapeutic effects. Radiation impedes wound healing by increasing the production of reactive oxygen species and inducing cell apoptosis and senescence. Here, a self-assembling peptide (R-peptide) and hyaluronic-acid (HA)-based and cordycepin-loaded superstructure hydrogel is prepared for surgical incision healing after neoadjuvant radiotherapy. Results show that i) R-peptide coassembles with HA to form biomimetic fiber bundle microstructure, in which R-peptide drives the assembly of single fiber through π-π stacking and other forces and HA, as a single fiber adhesive, facilitates bunching through electrostatic interactions. ii) The biomimetic superstructure contributes to the adhesion and proliferation of cells in the surgical wound. iii) Aldehyde-modified HA provides dynamic covalent binding sites for cordycepin to achieve responsive release, inhibiting radiation-induced cellular senescence. iv) Arginine in the peptides provides antioxidant capacity and a substrate for the endogenous production of nitric oxide to promote wound healing and angiogenesis of surgical wounds after neoadjuvant radiotherapy.

4.
J Control Release ; 368: 199-207, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38355051

ABSTRACT

Microneedle drug delivery has recently emerged as a clinical method, and dissolving microneedles (DMNs) offer exclusive simplicity and efficiency, compared to the other kinds of microneedles. The tips of most currently available DMNs are cone/house-shaped to result in a lower penetration force. Penetration of the needle tips into the skin relies mainly on the back tape or external pressure, and their adhesion to the skin is relatively low. In addition, only the drug in the part of tips that are pierced into the dermis can be dissolved, resulting in drug waste. Inspired from the barbed structure of the honeybee stinger, we reported substrate-free DMNs with a barbed structure by a dual-molding process, which is suitable for mass production. Those DMNs showed 3-fold greater adhesion force between the needle tips and the skin, better dissolution and deeper penetration than house-shaped DMNs in vivo under the same conditions. For the in situ treatment of psoriasis in mice, the barbed DMNs required only the half dose of house-shaped DMNs to achieve similar efficacy.


Subject(s)
Psoriasis , Skin , Mice , Animals , Administration, Cutaneous , Drug Delivery Systems/methods , Mechanical Phenomena , Needles
5.
Redox Biol ; 69: 103019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163420

ABSTRACT

Hepatic encephalopathy (HE) is often associated with endogenous serotonin (5-HT) disorders. However, the reason for elevated brain 5-HT levels due to liver failure remains unclear. This study aimed to investigate the mechanism by which liver failure increases brain 5-HT levels and the role in behavioral abnormalities in HE. Using bile duct ligation (BDL) rats as a HE model, we verified the elevated 5-HT levels in the cortex but not in the hippocampus and striatum, and found that this cortical 5-HT overload may be caused by BDL-mediated inhibition of UDP-glucuronosyltransferase 1A6 (UGT1A6) expression and activity in the cortex. The intraventricular injection of the UGT1A6 inhibitor diclofenac into rats demonstrated that the inhibition of brain UGT1A6 activity significantly increased cerebral 5-HT levels and induced HE-like behaviors. Co-immunofluorescence experiments demonstrated that UGT1A6 is primarily expressed in astrocytes. In vitro studies confirmed that NH4Cl activates the ROS-ERK pathway to downregulate UGT1A6 activity and expression in U251 cells, which can be reversed by the oxidative stress antagonist N-acetyl-l-cysteine and the ERK inhibitor U0126. Silencing Hepatocyte Nuclear Factor 4α (HNF4α) suppressed UGT1A6 expression whilst overexpressing HNF4α increased Ugt1a6 promotor activity. Meanwhile, both NH4Cl and the ERK activator TBHQ downregulated HNF4α and UGT1A6 expression. In the cortex of hyperammonemic rats, we also found activation of the ROS-ERK pathway, decreases in HNF4α and UGT1A6 expression, and increases in brain 5-HT content. These results prove that the ammonia-mediated ROS-ERK pathway activation inhibits HNF4α expression to downregulate UGT1A6 expression and activity, thereby increasing cerebral 5-HT content and inducing manic-like HE symptoms. This is the first study to reveal the mechanism of elevated cortical 5-HT concentration in a state of liver failure and elucidate its association with manic-like behaviors in HE.


Subject(s)
Liver Failure , Serotonin , Animals , Rats , Ammonia/metabolism , Bile Ducts/surgery , Bile Ducts/metabolism , Brain/metabolism , Cerebral Cortex/metabolism , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Liver Failure/metabolism , Reactive Oxygen Species/metabolism , Serotonin/metabolism
6.
Adv Mater ; 36(15): e2311043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38190762

ABSTRACT

The inherent immune and metabolic tumor microenvironment (TME) of most solid tumors adversely affect the antitumor efficacy of various treatments, which is an urgent issue to be solved in clinical cancer therapy. In this study, a mitochondrial localized in situ self-assembly system is constructed to remodel the TME by improving immunogenicity and disrupting the metabolic plasticity of cancer cells. The peptide-based drug delivery system can be pre-assembled into nanomicelles in vitro and form functional nanofibers on mitochondria through a cascade-responsive process involving reductive release, targeted enrichment, and in situ self-assembly. The organelle-specific in situ self-assemblyeffectively switches the role of mitophagy from pro-survival to pro-death, which finally induces intense endoplasmic reticulum stress and atypical type II immunogenic cell death. Disintegration of the mitochondrial ultrastructure also impedes the metabolic plasticity of tumor cells, which greatly promotes the immunosuppresive TME remodeling into an immunostimulatory TME. Ultimately, the mitochondrial localized in situ self-assembly system effectively suppresses tumor metastases, and converts cold tumors into hot tumors with enhanced sensitivity to radiotherapy and immune checkpoint blockade therapy. This study offers a universal strategy for spatiotemporally controlling supramolecular self-assembly on sub-organelles to determine cancer cell fate and enhance cancer therapy.


Subject(s)
Mitochondria , Neoplasms , Humans , Neoplasms/drug therapy , Cell Differentiation , Drug Delivery Systems , Immunogenic Cell Death , Tumor Microenvironment , Cell Line, Tumor , Immunotherapy
7.
NPJ Digit Med ; 7(1): 13, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225423

ABSTRACT

Facial palsy (FP) profoundly influences interpersonal communication and emotional expression, necessitating precise diagnostic and monitoring tools for optimal care. However, current electromyography (EMG) systems are limited by their bulky nature, complex setups, and dependence on skilled technicians. Here we report an innovative biosensing approach that utilizes a PEDOT:PSS-modified flexible microneedle electrode array (P-FMNEA) to overcome the limitations of existing EMG devices. Supple system-level mechanics ensure excellent conformality to the facial curvilinear regions, enabling the detection of targeted muscular ensemble movements for facial paralysis assessment. Moreover, our apparatus adeptly captures each electrical impulse in response to real-time direct nerve stimulation during neurosurgical procedures. The wireless conveyance of EMG signals to medical facilities via a server augments access to patient follow-up evaluation data, fostering prompt treatment suggestions and enabling the access of multiple facial EMG datasets during typical 6-month follow-ups. Furthermore, the device's soft mechanics alleviate issues of spatial intricacy, diminish pain, and minimize soft tissue hematomas associated with traditional needle electrode positioning. This groundbreaking biosensing strategy has the potential to transform FP management by providing an efficient, user-friendly, and less invasive alternative to the prevailing EMG devices. This pioneering technology enables more informed decision-making in FP-management and therapeutic intervention.

8.
Eur Radiol ; 34(2): 1314-1323, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37610441

ABSTRACT

OBJECTIVES: To investigate glymphatic function in Alzheimer's disease (AD) using the diffusion tensor image analysis along the perivascular space (DTI-ALPS) method and to explore the associations between DTI-ALPS index and perivascular space (PVS) volume, as well as between DTI-ALPS index and cognitive function. METHODS: Thirty patients with PET-CT-confirmed AD (15 AD dementia; 15 mild cognitive impairment due to AD) and 26 age- and sex-matched cognitively normal controls (NCs) were included in this study. All participants underwent neurological MRI and cognitive assessments. Bilateral DTI-ALPS indices were calculated. PVS volume fractions were quantitatively measured at three locations: basal ganglia (BG), centrum semiovale, and lateral ventricle body level. DTI-ALPS index and PVS volume fractions were compared among three groups; correlations among the DTI-ALPS index, PVS volume fraction, and cognitive scales were analyzed. RESULTS: Patients with AD dementia showed a significantly lower DTI-ALPS index in the whole brain (p = 0.009) and in the left hemisphere (p = 0.012) compared with NCs. The BG-PVS volume fraction in patients with AD was significantly larger than the fraction in NCs (p = 0.045); it was also negatively correlated with the DTI-ALPS index (r = - 0.433, p = 0.021). Lower DTI-ALPS index was correlated with worse performance in the Boston Naming Test (ß = 0.515, p = 0.008), Trail Making Test A (ß = - 0.391, p = 0.048), and Digit Span Test (ß = 0.408, p = 0.038). CONCLUSIONS: The lower DTI-ALPS index was found in patients with AD dementia, which may suggest impaired glymphatic system function. DTI-ALPS index was correlated with BG-PVS enlargement and worse cognitive performance in certain cognitive domains. CLINICAL RELEVANCE STATEMENT: Diffusion tensor image analysis along the perivascular space index may be applied as a useful indicator to evaluate the glymphatic system function. The impaired glymphatic system in patients with Alzheimer's disease (AD) dementia may provide a new perspective for understanding the pathophysiology of AD. KEY POINTS: • Patients with Alzheimer's disease dementia displayed a lower diffusion tensor image analysis along the perivascular space (DTI-ALPS) index, possibly indicating glymphatic impairment. • A lower DTI-ALPS index was associated with the enlargement of perivascular space and cognitive impairment. • DTI-ALPS index could be a promising biomarker of the glymphatic system in Alzheimer's disease dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Glymphatic System , Humans , Glymphatic System/diagnostic imaging , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Positron Emission Tomography Computed Tomography , Cognition , Cognitive Dysfunction/complications , Hypertrophy
9.
Angew Chem Int Ed Engl ; 62(34): e202301901, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37395563

ABSTRACT

Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.

10.
Bioeng Transl Med ; 8(4): e10530, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476063

ABSTRACT

Microneedles, especially hollow microneedles (HMNs), play an important role in drug delivery, but most of the current HMNs are manufactured based on silicon microfabrication (lithography, etching, etc.), which are slightly conservative due to the lack of low-cost, batch-scale and customized preparation approach, especially for the HMNs with flexible substrate. For the first time, we propose the use of a high-precision 3D printed master mold followed by a dual-molding process for the preparation of HMNs with different shapes, heights, and inner and outer diameters to satisfy different drug delivery needs. The 3D printed master mold and negative mold can be reused, thereby significantly reducing the cost. HMNs are based on biocompatible materials, such as heat-curing polymers or light-curing resins. The thickness and rigidity/flexibility characteristics of the substrate can be customized for different applications. The drug delivery efficiency of the fabricated HMNs was verified by the in situ treatment of psoriasis on the backs of mice, which required only a 0.1-fold oral dose to achieve similar efficacy, and the associated side effects and drug toxicity were reduced. Thus, this dual-molding process can reinvigorate HMNs development.

11.
Immun Ageing ; 20(1): 37, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37501123

ABSTRACT

BACKGROUND: Older adults are more vulnerable to seasonal influenza than younger adults. The immune responses of older persons to the influenza vaccine are usually poorer than those of young individuals, which is hypothesized due to immunosenescence. We conducted a study to evaluate the immunogenicity and safety of a quadrivalent inactivated influenza vaccine (IIV4) in a total of 167 young (< 65 years, n = 79) and older (≥ 65 years, n = 88) adults from October 2021 to March 2022 in Tianjin, China. A single dose was administered to all participants. Blood samples were collected and strain-specific hemagglutination inhibition (HAI) antibody titers were measured before and 21 to 28 days after vaccination. Safety information was also collected for 28 days and 6 months after vaccination. Differences in immunogenicity and safety were compared between young and old age groups, and multivariate logistic regression was used to estimate the effect of age and other factors on HAI antibody responses. RESULTS: Overall, geometric mean titers (GMTs) against all four vaccine strains in older adults were lower than those in the young, whereas the seroconversion rates (SCRs) were similar. Multivariate logistic regression analysis showed that age, influenza vaccination history, and pre-vaccination HAI titers were independent factors affecting SCRs and seroprotection rates (SCRs). Older age had significant negative impact on SCRs against H1N1 (OR, 0.971; 95% CI: 0.944-0.999; P = 0.042) and B/Victoria (OR, 0.964; 95% CI: 0.937-0.992; P = 0.011). In addition, there was a significant negative correlation between chronological age (years) and post-vaccination HAI titers against H1N1 (rho = -0.2298, P < 0.0001), B/Victoria (rho = -0.2235, P = 0.0037), and B/Yamagata (rho = -0.3689, P < 0.0001). All adverse events were mild (grade 1 or grade 2) that occurred within 28 days after vaccination, and no serious adverse event was observed. CONCLUSIONS: IIV4 is immunogenic and well-tolerated in young and older adults living in Tianjin, China. Our findings also indicate that age is an independent factor associated with poorer humoral immune responses to IIV4.

12.
Sensors (Basel) ; 23(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37430627

ABSTRACT

Mountainous regions are prone to dammed lake disasters due to their rough topography, scant vegetation, and high summer rainfall. By measuring water level variation, monitoring systems can detect dammed lake events when mudslides block rivers or boost water level. Therefore, an automatic monitoring alarm method based on a hybrid segmentation algorithm is proposed. The algorithm uses the k-means clustering algorithm to segment the picture scene in the RGB color space and the region growing algorithm on the image green channel to select the river target from the segmented scene. The pixel water level variation is used to trigger an alarm for the dammed lake event after the water level has been retrieved. In the Yarlung Tsangpo River basin of the Tibet Autonomous Region of China, the proposed automatic lake monitoring system was installed. We pick up data from April to November 2021, during which the river experienced low, high, and low water levels. Unlike conventional region growing algorithms, the algorithm does not rely on engineering knowledge to pick seed point parameters. Using our method, the accuracy rate is 89.29% and the miss rate is 11.76%, which is 29.12% higher and 17.65% lower than the traditional region growing algorithm, respectively. The monitoring results indicate that the proposed method is a highly adaptable and accurate unmanned dammed lake monitoring system.

13.
Comput Biol Med ; 163: 107192, 2023 09.
Article in English | MEDLINE | ID: mdl-37429126

ABSTRACT

Human action intent recognition has become increasingly dependent on computational accuracy, real-time responsiveness, and model lightness. Model selection, data filtering, and experimental design are three critical factors for the recognition of human intention in research. However, the performance of machine learning algorithms can vary depending on factors such as sensor location, the number of sensors used, channel selection, and dimensional combinations. Moreover, the collection of adequate and balanced data in such scenarios can be challenging. To address this issue, we present a comparative analysis of 12 commonly used machine learning algorithms for human action intention recognition. The synthetic minority oversampling technique is applied to fill in missing data. Traversing all possible combinations would require conducting 686 experiments, which is a daunting task in terms of both cost and efficiency. To tackle this challenge, we employ an orthogonal experiment design based on the Quasi-horizontal method. Our analysis indicates that lightGBM outperforms other algorithms in recognizing eight human daily activities. Furthermore, we conduct a polar difference and variance analysis based on a comprehensive balanced multi-metric orthogonal experiment for lightGBM using various sensor combinations and dimensions. The optimal combinations of different sensor numbers in terms of position, channel, and dimension are derived using this approach. Notably, our experimental design reduces the number of experiments required to only 49 times.


Subject(s)
Gait , Intention , Humans , Algorithms , Activities of Daily Living , Machine Learning
14.
Fish Shellfish Immunol Rep ; 5: 100109, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37448875

ABSTRACT

LHPP (Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase) is a protein histidine phosphatase that modulates a hidden posttranslational modification called histidine phosphorylation. LHPP also acts as a tumor suppressor, which plays a pivotal role in various cellular processes. However, whether LHPP participates in the regulation of invertebrate's immunity is still unknown. Here we characterized a LHPP homolog in P. vannamei (designated PvLHPP), with a 807 bp length of open reading frame (ORF) encoding a putative protein of 268 amino acids. Sequence analysis revealed that PvLHPP contains a typical hydrolase 6 and hydrolase-like domain, which was conserved from invertebrate to vertebrate. PvLHPP was ubiquitously expressed in tissues and induced in hemocyte and hepatopancreas by Vibrio parahaemolyticus, Streptococcus iniae and white spot syndrome virus (WSSV) challenge, indicating that PvLHPP participated in the immune responses. Moreover, silencing of PvLHPP followed by V. parahaemolyticus inhibited hemocyte apoptosis. This study enriches our current insight on shrimp immunity, and provides novel perspective to understand immune-regulatory role of PvLHPP.

15.
Adv Healthc Mater ; 12(27): e2301083, 2023 10.
Article in English | MEDLINE | ID: mdl-37300544

ABSTRACT

Radiotherapy (RT) can produce a vaccine effect and remodel a tumor microenvironment (TME) by inducing immunogenic cell death (ICD) and inflammation in tumors. However, RT alone is insufficient to elicit a systemic antitumor immune response owing to limited antigen presentation, immunosuppressive microenvironment, and chronic inflammation within the tumor. Here, a novel strategy is reported for the generation of in situ peptide-based nanovaccines via enzyme-induced self-assembly (EISA) in tandem with ICD. As ICD progresses, the peptide Fbp-GD FD FD pY (Fbp-pY), dephosphorylated by alkaline phosphatase (ALP) forms a fibrous nanostructure around the tumor cells, resulting in the capture and encapsulation of the autologous antigens produced by radiation. Utilizing the adjuvant and controlled-release advantages of self-assembling peptides, this nanofiber vaccine effectively increases antigen accumulation in the lymph nodes and cross-presentation by antigen-presenting cells (APCs). In addition, the inhibition of cyclooxygenase 2 (COX-2) expression by the nanofibers promotes the repolarization of M2-macrophages into M1 and reduces the number of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) required for TME remodeling. As a result, the combination of nanovaccines and RT significantly enhances the therapeutic effect on 4T1 tumors compared with RT alone, suggesting a promising treatment strategy for tumor radioimmunotherapy.


Subject(s)
Nanofibers , Neoplasms , Vaccines , Humans , Radioimmunotherapy , Immunogenic Cell Death , Immunotherapy/methods , Neoplasms/radiotherapy , Peptides , Inflammation , Tumor Microenvironment , Cell Line, Tumor
16.
Neural Plast ; 2023: 7948140, 2023.
Article in English | MEDLINE | ID: mdl-37025422

ABSTRACT

During growth and aging, the role of the hippocampus in memory depends on its interactions with related brain regions. Particularly, two subregions, anterior hippocampus (aHipp) and posterior hippocampus (pHipp), play different and critical roles in memory processing. However, age-related changes of hippocampus subregions on structure and function are still unclear. Here, we investigated age-related structural and functional characteristics of 106 participants (7-85 years old) in resting state based on fractional anisotropy (FA) and functional connectivity (FC) in aHipp and pHipp in the lifespan. The correlation between FA and FC was also explored to identify the coupling. Furthermore, the Wechsler Abbreviated Scale of Intelligence (WASI) was used to explore the relationship between cognitive ability and hippocampal changes. Results showed that there was functional separation and integration in aHipp and pHipp, and the number of functional connections in pHipp was more than that in aHipp across the lifespan. The age-related FC changes showed four different trends (U-shaped/inverted U-shaped/linear upward/linear downward). And around the age of 40 was a critical period for transformation. Then, FA analyses indicated that all effects of age on the hippocampal structures were nonlinear, and the white matter integrity of pHipp was higher than that of aHipp. In the functional-structural coupling, we found that the age-related FA of the right aHipp (aHipp.R) was negatively related to the FC. Finally, through the WASI, we found that the age-related FA of the left aHipp (aHipp.L) was positively correlated with verbal IQ (VERB) and vocabulary comprehension (VOCAB.T), the FA of aHipp.R was only positively correlated with VERB, and the FA of the left pHipp (pHipp.L) was only positively correlated with VOCAB.T. These FC and FA results supported that age-related normal memory changes were closely related to the hippocampus subregions. We also provided empirical evidence that memory ability was altered with the hippocampus, and its efficiency tended to decline after age 40.


Subject(s)
White Matter , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , White Matter/diagnostic imaging , Longevity , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Brain
17.
Nanoscale ; 15(16): 7502-7509, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37017562

ABSTRACT

Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation via the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences. We unexpectedly found that Nap-FVY and its reverse sequence Nap-YVF self-assembled into nanospheres, respectively, while their mixture formed nanofibers, obviously exhibiting a low-to-high hierarchical structure transformation. Further, this phenomenon was demonstrated by the other two collocations. The cooperation of Nap-VYF and Nap-FYV afforded the transformation from nanofibers to twisted nanoribbons, and the cooperation of Nap-VFY and Nap-YFV realized the transformation from nanoribbons to nanotubes. The reason may be that the cooperative systems in the anti-parallel ß-sheet conformation created more hydrogen bond interactions and in-register π-π stacking, promoting a more compact molecular arrangement. This work provides a handy approach for controlled hierarchical assembly and the development of various functional bionanomaterials.


Subject(s)
Nanofibers , Nanospheres , Nanotubes, Carbon , Peptides/chemistry , Nanofibers/chemistry , Protein Structure, Secondary
18.
Acta Biomater ; 164: 447-457, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36996995

ABSTRACT

The acidosis anti-tumor therapy, based on the altered energy metabolism pathway of tumor cells, has been proposed as an attractive method for cancer selective treatment. However, the strategy of inducing tumor acidosis by using a single drug to simultaneously inhibit both lactate efflux and consumption has not been reported yet. Herein, an in situ enzyme-instructed self-assembly (EISA) system was rationally fabricated to induce tumor acidosis apoptosis for cancer selective therapy. Depending on the sequential effect of the in situ EISA system, the targeted drug was successively distributed on the membrane and intracellular, inhibiting MCT4 mediated lactate efflux and mitochondrial tricarboxylic acid (TCA) cycle mediated lactate consumption, respectively. Through the dual obstruction of lactate metabolism to trigger tumor acidosis, the in situ EISA nanomedicine showed selective growth and migration inhibition against cancer cells. In addition, the nanomedicine also displayed a radio-sensitization effect in vitro due to causing the mitochondrial dysfunction, and exhibited a prominent synergistic chemo-radiotherapy anti-tumor performance in vivo. Accordingly, this work demonstrated that the in situ EISA system could endow the LND with sequential-dual effects to induce tumor acidosis, which may provide an enlightening strategy for anticancer drug delivery and cancer selective therapy. STATEMENT OF SIGNIFICANCE: With the help of the sequential effect of in situ EISA , the serial attack of LND against different targets was effectively realized to induce tumor acidosis and combined chemo-radiotherapy, implying the importance of the relationship between structure and function, which could offer a distinctive inspiration for future drug delivery system design and anti-tumor application.


Subject(s)
Acidosis , Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Apoptosis , Lactates/pharmacology , Lactates/therapeutic use , Acidosis/drug therapy , Cell Line, Tumor
19.
Microbiome ; 10(1): 213, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36464721

ABSTRACT

BACKGROUND: Numerous microorganisms are found in aquaculture ponds, including several pathogenic bacteria. Infection of cultured animals by these pathogens results in diseases and metabolic dysregulation. However, changes in the metabolic profiles that occur at different infection stages in the same ponds and how these metabolic changes can be modulated by exogenous metabolites in Penaeus vannamei remain unknown. RESULTS: Here, we collected gastrointestinal tract (GIT) samples from healthy, diseased, and moribund P. vannamei in the same aquaculture pond for histological, metabolic, and transcriptome profiling. We found that diseased and moribund shrimp with empty GITs and atrophied hepatopancreas were mainly infected with Vibrio parahaemolyticus and Vibrio harveyi. Although significant dysregulation of crucial metabolites and their enzymes were observed in diseased and moribund shrimps, diseased shrimp expressed high levels of taurine and taurine metabolism-related enzymes, while moribund shrimp expressed high levels of hypoxanthine and related metabolism enzymes. Moreover, a strong negative correlation was observed between taurine levels and the relative abundance of V. parahaemolyticus and V. harveyi. Besides, exogenous taurine enhanced shrimp survival against V. parahaemolyticus challenge by increasing the expression of key taurine metabolism enzymes, mainly, cysteine dioxygenase (CDO) and cysteine sulfinic acid decarboxylase (CSD). CONCLUSIONS: Our study revealed that taurine metabolism could be modulated by exogenous supplementation to improve crustacean immune response against pathogenic microbes. Video Abstract.


Subject(s)
Penaeidae , Vibrio , Animals , Seafood , Aquaculture , Anti-Bacterial Agents/pharmacology
20.
China CDC Wkly ; 4(39): 871-874, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36284921

ABSTRACT

What is already known about this topic?: Rehabilitation is an essential part of achieving health for all, whereas the estimates of rehabilitation needs, especially for elderly individuals in China, are not clear. What is added by this report?: Compared with 1990, the prevalence and years of life lived with disability for health conditions in need of rehabilitation in China increased by 71.3% and 77.0% in 2019, respectively, at a rate much higher than the global average. What are the implications for public health practices?: This study mainly presents scientific data and a systematic analysis of the current state and challenges of rehabilitation needs for elderly individuals (aged 60 and above) in China based on the World Health Organization Rehabilitation Need Estimator.

SELECTION OF CITATIONS
SEARCH DETAIL
...