Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 9(9): 1711-1729, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37610012

ABSTRACT

A series of pleuromutilin derivatives containing an oxazolidinone skeleton were synthesized and evaluated in vitro and in vivo as antibacterial agents. Most of the synthesized derivatives exhibited potent antibacterial activities against three strains of Staphylococcus aureus (including MRSA ATCC 33591, MRSA ATCC 43300, and MSSA ATCC 29213) and two strains of Staphylococcus epidermidis (including MRSE ATCC 51625 and MSSE ATCC 12228). Compound 28 was the most active antibacterial agent in vitro (MIC = 0.008-0.125 µg·mL-1) and exhibited a significant bactericidal effect, low cytotoxicity, and weak inhibition (IC50 = 20.66 µmol·L-1) for CYP3A4, as well as exhibited less possibility to cause bacterial resistance. Furthermore, in vivo activities indicated that the compound was effective in reducing MRSA load in a murine thigh infection model. Moreover, it clearly facilitated the healing of MRSA skin infection and inhibited the secretion of the TNF-α, IL-6, and MCP-1 inflammatory factors in serum. These results suggest that oxazolidinone pleuromutilin is a promising therapeutic candidate for drug-resistant bacterial infections.


Subject(s)
Diterpenes , Oxazolidinones , Animals , Mice , Anti-Bacterial Agents/pharmacology , Oxazolidinones/pharmacology , Oxindoles , Pleuromutilins
2.
J Med Chem ; 64(12): 8303-8332, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34110158

ABSTRACT

Human indoleamine 2,3-dioxygenase 1 (hIDO1) and tryptophan 2,3-dioxygenase (hTDO) have been closely linked to the pathogenesis of Parkinson's disease (PD); nevertheless, development of dual hIDO1 and hTDO inhibitors to evaluate their potential efficacy against PD is still lacking. Here, we report biochemical, biophysical, and computational analyses revealing that 1H-indazole-4-amines inhibit both hIDO1 and hTDO by a mechanism involving direct coordination with the heme ferrous and ferric states. Crystal structure-guided optimization led to 23, which manifested IC50 values of 0.64 and 0.04 µM to hIDO1 and hTDO, respectively, and had good pharmacokinetic properties and brain penetration in mice. 23 showed efficacy against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse motor coordination deficits, comparable to Madopar, an anti-PD medicine. Further studies revealed that different from Madopar, 23 likely has specific anti-PD mechanisms involving lowering IDO1 expression, alleviating dopaminergic neurodegeneration, reducing inflammatory cytokines and quinolinic acid in mouse brain, and increasing kynurenic acid in mouse blood.


Subject(s)
Enzyme Inhibitors/therapeutic use , Indazoles/therapeutic use , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Parkinson Disease, Secondary/drug therapy , Tryptophan Oxygenase/antagonists & inhibitors , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Brain/pathology , Cell Line, Tumor , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Indazoles/chemical synthesis , Indazoles/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/pathology , Protein Binding , Structure-Activity Relationship , Tryptophan Oxygenase/metabolism
3.
Chem Pharm Bull (Tokyo) ; 62(8): 779-85, 2014.
Article in English | MEDLINE | ID: mdl-25087630

ABSTRACT

First, Raddeanin A, a cytotoxic oleanane-type triterpenoid saponin isolated from Anemone raddeana REGEL, was synthesized. Stepwise glycosylation was adopted in the synthesis from oleanolic acid, employing arabinosyl, glucosyl and rhamnosyl trichloroacetimidate as donors. The chemical structure of Raddeanin A was confirmed by means of (1)H-NMR, (13)C-NMR, IR, MS and elemental analysis, which elucidated the structure to be 3-O-α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside oleanolic acid. Biological activity tests showed that in the range of low concentrations, Raddeanin A displayed moderate inhibitory activity against histone deacetylases (HDACs), indicating that the HDACs' inhibitory activity of Raddeanin A may contribute to its cytotoxicity.


Subject(s)
Anemone/chemistry , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Saponins/chemical synthesis , Saponins/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , HeLa Cells , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/isolation & purification , Humans , Saponins/chemistry , Saponins/isolation & purification
4.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): o1691, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22719485

ABSTRACT

In the title compound, C(14)H(17)NO, the piperidinone and piperidine rings both adopt a chair conformation. The chiral crystals were obtained from a racemic reaction product via spontaneous resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...