Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 14(1): 11319, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760479

ABSTRACT

Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement and innovation of the principle and algorithm for smoke particle concentration detection provide opportunities for improving the performance of the detector. This study represents a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate smoke concentration. Through experiments, it was found that the detector provides effective detection of smoke particle concentrations ranging from 0 to 10% obs/m; moreover, when the detection accuracy is greater than a certain number of parts per million (PPM), the sensitivity of the detector can reach the PPM level; furthermore, the detector can detect smoke particle concentrations higher than the PPM level accuracy even in an environment with a certain concentration of petroliferous and dust particles of different sizes.

2.
PLoS One ; 19(5): e0300374, 2024.
Article in English | MEDLINE | ID: mdl-38753659

ABSTRACT

Combustible gas concentration detection faces challenges of increasing accuracy, and sensitivity, as well as high reliability in harsh using environments. The special design of the optical path structure of the sensitive element provides an opportunity to improve combustible gas concentration detection. In this study, the optical path structure of the sensitive element was newly designed based on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency point signal superimposed modulation technology. At the same time, concentration detection results and confidence levels were calculated using the 4-channel combustible gas concentration detection algorithm based on spectral refinement. Through experiment, it is found that the sensor enables full-range measurement of CH4, at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability level is 0.01 parts-per-million (PPM), and the sensor sensitivity is up to 0.5PPM. The sensor is still capable of achieving PPM-level detections, under extreme conditions in which the sensor's optical window is covered by 2/3, and humidity is 85% or dust concentration is 100mg/m3. Those improve the sensitivity, robustness, reliability, and accuracy of the sensor.


Subject(s)
Gases , Gases/analysis , Algorithms , Reproducibility of Results , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Equipment Design
3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475229

ABSTRACT

Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. The improvement in and innovation of the principle and algorithm of smoke particle concentration detection provide an opportunity for the performance improvement in the detector. This study is a new refinement of the smoke concentration detection principle based on capacitive detection of cell structures, and detection signals are processed by a multiscale smoke particle concentration detection algorithm to calculate particle concentration. Through experiments, it is found that the detector provides effective detection of smoke particle concentrations ranging from 0 to 10% obs/m; moreover, the detector can detect smoke particles at parts per million (PPM) concentration levels (at 2 and 5 PPM), and the accuracy of the detector can reach at least the 0.5 PPM level. Furthermore, the detector can detect smoke particle concentrations at better than 1 PPM accuracy even in an environment with 6% obs/m oil gas particles, 7% obs/m large dust interference particles, or 8% obs/m small dust interference particles.

4.
Sensors (Basel) ; 24(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38257694

ABSTRACT

Methane gas concentration detection faces the challenges of increasing accuracy and sensitivity, as well as high reliability in harsh environments. The special design of the optical path structure of the sensitive element provides an opportunity to improve methane gas concentration detection. In this study, the optical path structure of the sensitive element was newly designed based on the Pyramidal beam splitter matrix. The infrared light source was modulated by multi-frequency point-signal superimposed modulation technology. At the same time, concentration detection results and confidence levels were calculated using the four-channel methane gas concentration detection algorithm based on spectral refinement. Through the experiment, it was found that the sensor enables the full-range measurement of CH4; at the lower explosive limit (LEL, CH4 LEL of 5%), the reliability level is 0.01 parts-per-million (PPM), and the limit of detection is 0.5 ppm. The sensor is still capable of achieving PPM-level detections under extreme conditions in which the sensor's optical window is covered by two-thirds and humidity is 85% or dust concentration is 100 mg/m3. Those improve the sensitivity, robustness, reliability, and accuracy of the sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...