Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
J Inflamm Res ; 17: 3449-3458, 2024.
Article in English | MEDLINE | ID: mdl-38828047

ABSTRACT

Objective: To identify subclasses of acute pancreatitis (AP) patients in the intensive care unit (ICU) by analyzing blood urea nitrogen (BUN) trajectories. Methods: AP patients in West China Hospital System (development cohort) and three public databases in the United States (validation cohort) were included. Latent class trajectory modelling was used to identify subclasses based on BUN trajectories within the first 21 days after ICU admission. Clinical characteristics and outcomes were compared, and results were externally validated. Results: The study comprised 2971 and 930 patients in the development and validation cohorts, respectively, with five subclasses: Class 1 ("Moderate-azotemia, slow decreasing"), Class 2 ("Non-azotemia"), Class 3 ("Severe-azotemia, slow decreasing"), Class 4 ("Moderate-azotemia, rapid increasing"), and Class 5 ('Moderate-azotemia, slow increasing) identified. Azotemia patients showed significantly higher 30-day mortality risk in development and validation cohorts. Specifically, Class 4 patients exhibited notably highest mortality risk in both the development cohort (HR 5.32, 95% CI 2.62-10.82) and validation cohort (HR 6.23, 95% CI 2.93-13.22). Regarding clinical characteristics, AP patients in Class 4 showed lower mean arterial pressure and a higher proportion of renal disease. We also created an online early classification model to further identify Class 4 patients among all patients with moderate azotemia at baseline. Conclusion: This multinational study uncovers heterogeneity in BUN trajectories among AP patients. Patients with "Moderate-azotemia, rapid increasing" trajectory, had a higher mortality risk than patients with severe azotemia at baseline. This finding complements studies that solely rely on baseline BUN for risk stratification and enhanced our understanding of longitudinal progression of AP.

2.
Avian Pathol ; : 1-11, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836447

ABSTRACT

Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 day of age (DOA) was evaluated. The chickens were exposed to 160-µm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titers were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.

3.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854017

ABSTRACT

Light-sheet fluorescence microscopy (LSFM), a prominent fluorescence microscopy technique, offers enhanced temporal resolution for imaging biological samples in four dimensions (4D; x, y, z, time). Some of the most recent implementations, including inverted selective plane illumination microscopy (iSPIM) and lattice light-sheet microscopy (LLSM), rely on a tilting of the sample plane with respect to the light sheet of 30-45 degrees to ease sample preparation. Data from such tilted-sample-plane LSFMs require subsequent deskewing and rotation for proper visualization and analysis. Such transformations currently demand substantial memory allocation. This poses computational challenges, especially with large datasets. The consequence is long processing times compared to data acquisition times, which currently limits the ability for live-viewing the data as it is being captured by the microscope. To enable the fast preprocessing of large light-sheet microscopy datasets without significant hardware demand, we have developed WH-Transform, a novel GPU-accelerated memory-efficient algorithm that integrates deskewing and rotation into a single transformation, significantly reducing memory requirements and reducing the preprocessing run time by at least 10-fold for large image stacks. Benchmarked against conventional methods and existing software, our approach demonstrates linear scalability. Processing large 3D stacks of up to 15 GB is now possible within one minute using a single GPU with 24 GB of memory. Applied to 4D LLSM datasets of human hepatocytes, human lung organoid tissue, and human brain organoid tissue, our method outperforms alternatives, providing rapid, accurate preprocessing within seconds. Importantly, such processing speeds now allow visualization of the raw microscope data stream in real time, significantly improving the usability of LLSM in biology. In summary, this advancement holds transformative potential for light-sheet microscopy, enabling real-time, on-the-fly data processing, visualization, and analysis on standard workstations, thereby revolutionizing biological imaging applications for LLSM, SPIM and similar light microscopes.

4.
Physiol Plant ; 176(3): e14323, 2024.
Article in English | MEDLINE | ID: mdl-38695188

ABSTRACT

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Subject(s)
Disease Resistance , Phytophthora , Plant Diseases , Rhizosphere , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Solanum lycopersicum/genetics , Phytophthora/physiology , Serratia/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Antioxidants/metabolism , Plant Roots/microbiology , Plant Roots/physiology
5.
Small ; : e2401299, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38746996

ABSTRACT

The immunosuppressive tumor microenvironment (TME) reduces the chimeric antigen receptor (CAR) T-cell therapy against solid tumors. Here, a CAR T cell membrane-camouflaged nanocatalyst (ACSP@TCM) is prepared to augment CAR T cell therapy efficacy against solid tumors. ACSP@TCM is prepared by encapsulating core/shell Au/Cu2- xSe and 3-bromopyruvate with a CAR T cell membrane. It is demonstrated that the CAR T cell membrane camouflaging has much better-targeting effect than the homologous tumors cell membrane camouflaging. ACSP@TCM has an appealing synergistic chemodynamic/photothermal therapy (CDT/PTT) effect that can induce the immunogenic cell death (ICD) of NALM 6 cells. Moreover, 3-bromopyruvate can inhibit the efflux of lactic acid by inhibiting the glycolysis process, regulating the acidity of TME, and providing a more favorable environment for the survival of CAR T cells. In addition, the photoacoustic (PA) imaging and computed tomography (CT) imaging performance can guide the ACSP@TCM-mediated tumor therapy. The results demonstrated that the ACSP@TCM significantly enhanced the CAR T cell therapy efficacy against NALM 6 solid tumor mass, and completely eliminated tumors. This work provides an effective tumor strategy for CAR T cell therapy in solid tumors.

6.
Int J Geriatr Psychiatry ; 39(5): e6093, 2024 May.
Article in English | MEDLINE | ID: mdl-38752607

ABSTRACT

BACKGROUND: Dementia is a significant cause of death in the older population and is becoming an important public health issue as the population ages and the prevalence of dementia increases. The Braden score is one of the most commonly used clinical tools to assess the risk of skin pressure injury in patients, and some studies have reported that it may reflect the state of frailty of patients. The present study attempted to explore the association between Braden score and 90-day mortality, pressure injury, and aspiration pneumonia in older patients with dementia in the intensive care unit (ICU). METHODS: The study involved extracting crucial data from the Medical Information Market for Intensive Care IV (MIMIC-IV) database using Structured Query Language, with a license certificate obtained after completing the necessary training and examination available on the MIMIC-IV website. A retrospective analysis was performed on older patients with dementia, aged 65 or older, who were first admitted to the ICU. Ninth and tenth revision International Classification of Diseases codes were used to identify patients with dementia. The primary outcome was 90-day mortality. Cox proportional hazards models were used to determine the association between Braden score and death, and hazard ratios (HR) and 95% confidence intervals (CI) were calculated. Propensity score matching and E-value assessments were employed for sensitivity analysis. RESULTS: A total of 2892 patients with a median age of approximately 85 years (interquartile range 78.74-89.59) were included, of whom 1625 were female (56.2%). Patients had a median Braden score of 14 (interquartile range 12-15) at ICU admission. Braden score at ICU admission was inversely associated with 90-day mortality risk after adjustment for demographics, severity of illness, treatment and medications, delirium, and sepsis (adjusted HR: 0.92, 95% CI: 0.87-0.98, p = 0.006). Patients were divided into two groups with a cut-off value of 15: high-risk group and low-risk group. Compared to the low-risk group (Braden score >15), the risk of 90-day mortality was significantly increased in the high-risk group (Braden score ≤15) (adjusted HR: 1.52, 95% CI: 1.10-2.09, p = 0.011, E-value: 2.01), the risk of pressure injury (adjusted OR: 2.62, 95% CI: 2.02-3.43, E-value: 2.62) and aspiration pneumonia (adjusted OR: 2.55, 95% CI: 1.84-3.61, E-value: 2.57) was also significantly higher. CONCLUSIONS: The Braden score may be a quick and simple screening tool to identify the risk of adverse outcomes in critically ill older adults with dementia.


Subject(s)
Critical Illness , Dementia , Intensive Care Units , Humans , Female , Male , Aged , Aged, 80 and over , Dementia/mortality , Critical Illness/mortality , Intensive Care Units/statistics & numerical data , Retrospective Studies , Pressure Ulcer/mortality , Proportional Hazards Models , Pneumonia, Aspiration/mortality , Propensity Score , Hospital Mortality
7.
J Acoust Soc Am ; 155(5): 3410-3425, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38780198

ABSTRACT

The probability distribution of three-dimensional sound speed fields (3D SSFs) in an ocean region encapsulates vital information about their variations, serving as valuable data-driven priors for SSF inversion tasks. However, learning such a distribution is challenging due to the high dimensionality and complexity of 3D SSFs. To tackle this challenge, we propose employing the diffusion model, a cutting-edge deep generative model that has showcased remarkable performance in diverse domains, including image and audio processing. Nonetheless, applying this approach to 3D ocean SSFs encounters two primary hurdles. First, the lack of publicly available well-crafted 3D SSF datasets impedes training and evaluation. Second, 3D SSF data consist of multiple 2D layers with varying variances, which can lead to uneven denoising during the reverse process. To surmount these obstacles, we introduce a novel 3D SSF dataset called 3DSSF, specifically designed for training and evaluating deep generative models. In addition, we devise a high-capacity neural architecture for the diffusion model to effectively handle variations in 3D sound speeds. Furthermore, we employ state-of-the-art continuous-time-based optimization method and predictor-corrector scheme for high-performance training and sampling. Notably, this paper presents the first evaluation of the diffusion model's effectiveness in generating 3D SSF data. Numerical experiments validate the proposed method's strong ability to learn the underlying data distribution of 3D SSFs, and highlight its effectiveness in assisting SSF inversion tasks and subsequently characterizing the transmission loss of underwater acoustics.

8.
Orphanet J Rare Dis ; 19(1): 183, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698482

ABSTRACT

BACKGROUND: With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. RESULTS: Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. CONCLUSIONS: The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.


Subject(s)
Algorithms , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Infant , Infant, Newborn , Child, Preschool , Female , Male , Electronic Health Records , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Phenotype
9.
iScience ; 27(6): 109942, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38812547

ABSTRACT

Biofilm formation plays a significant role in antibiotic resistance, necessitating the search for alternative therapies against biofilm-associated infections. This study demonstrates that 20 µg/mL tryptanthrin can hinder biofilm formation above 50% in various A. baumannii strains. Tryptanthrin impacts various stages of biofilm formation, including the inhibition of surface motility and eDNA release in A. baumannii, as well as an increase in its sensitivity to H202. RT-qPCR analysis reveals that tryptanthrin significantly decreases the expression of the following genes: abaI (19.07%), abaR (33.47%), bfmR (43.41%), csuA/B (64.16%), csuE (50.20%), ompA (67.93%), and katE (72.53%), which are related to biofilm formation and quorum sensing. Furthermore, tryptanthrin is relatively safe and can reduce the virulence of A. baumannii in a Galleria mellonella infection model. Overall, our study demonstrates the potential of tryptanthrin in controlling biofilm formation and virulence of A. baumannii by disrupting different stages of biofilm formation and intercellular signaling communication.

10.
Sci Rep ; 14(1): 11860, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789583

ABSTRACT

Acute lung injury (ALI) is life-threatening. MicroRNAs (miRNAs) are often abnormally expressed in inflammatory diseases and are closely associated with ALI. This study investigates whether miRNA-206-3p attenuates pyroptosis in ALI and elucidates the underlying molecular mechanisms. ALI mouse and cell models were established through lipopolysaccharide (LPS) treatment for 24 h. Subsequently, the models were evaluated based on ultrasonography, the lung tissue wet/dry (W/D) ratio, pathological section assessment, electron microscopy, and western blotting. Pyroptosis in RAW264.7 cells was then assessed via electron microscopy, immunofluorescence, and western blotting. Additionally, the regulatory relationship between miRNA-206-3p and the Toll-like receptor (TLR)4/nuclear factor (NF)-κB/Nod-like receptor protein-3 (NLRP3) pathway was verified. Finally, luciferase reporter gene and RNA pull-down assays were used to verify the targeting relationship between miRNA-206-3p and TLR4. miRNA206-3p levels are significantly decreased in the LPS-induced ALI model. Overexpression of miRNA-206-3p improves ALI, manifested as improved lung ultrasound, improved pathological changes of lung tissue, reduced W/D ratio of lung tissue, release of inflammatory factors in lung tissue, and reduced pyroptosis. Furthermore, overexpression of miRNA-206-3p contributed to reversing the ALI-promoting effect of LPS by hindering TLR4, myeloid differentiation primary response 88 (MyD88), NF-κB, and NLRP3 expression. In fact, miRNA-206-3p binds directly to TLR4. In conclusion, miRNA-206-3p alleviates LPS-induced ALI by inhibiting inflammation and pyroptosis via TLR4/NF-κB/NLRP3 pathway modulation.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , MicroRNAs , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Toll-Like Receptor 4 , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Pyroptosis/genetics , Mice , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/pathology , NF-kappa B/metabolism , RAW 264.7 Cells , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Male , Mice, Inbred C57BL , Disease Models, Animal
11.
Cell Biosci ; 14(1): 43, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561835

ABSTRACT

The prevalence of Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), is increasing worldwide. The pathogenesis of CD is hypothesized to be related to environmental, genetic, immunological, and bacterial factors. Current studies have indicated that intestinal epithelial cells, including columnar, Paneth, M, tuft, and goblet cells dysfunctions, are strongly associated with these pathogenic factors. In particular, goblet cells dysfunctions have been shown to be related to CD pathogenesis by direct or indirect ways, according to the emerging studies. The mucus barrier was established with the help of mucins secreted by goblet cells. Not only do the mucins mediate the mucus barrier permeability and bacterium selection, but also, they are closely linked with the endothelial reticulum stress during the synthesis process. Goblet cells also play a vital role in immune response. It was indicated that goblet cells take part in the antigen presentation and cytokines secretion process. Disrupted goblet cells related immune process were widely discovered in CD patients. Meanwhile, dysbiosis of commensal and pathogenic microbiota can induce myriad immune responses through mucus and goblet cell-associated antigen passage. Microbiome dysbiosis lead to inflammatory reaction against pathogenic bacteria and abnormal tolerogenic response. All these three pathways, including the loss of mucus barrier function, abnormal immune reaction, and microbiome dysbiosis, may have independent or cooperative effect on the CD pathogenesis. However, many of the specific mechanisms underlying these pathways remain unclear. Based on the current understandings of goblet cell's role in CD pathogenesis, substances including butyrate, PPARγagonist, Farnesoid X receptor agonist, nuclear factor-Kappa B, nitrate, cytokines mediators, dietary and nutrient therapies were all found to have potential therapeutic effects on CD by regulating the goblet cells mediated pathways. Several monoclonal antibodies already in use for the treatment of CD in the clinical settings were also found to have some goblet cells related therapeutic targets. In this review, we introduce the disease-related functions of goblet cells, their relationship with CD, their possible mechanisms, and current CD treatments targeting goblet cells.

12.
Cell Res ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605178

ABSTRACT

The suprachiasmatic nucleus (SCN) is the mammalian central circadian pacemaker with heterogeneous neurons acting in concert while each neuron harbors a self-sustained molecular clockwork. Nevertheless, how system-level SCN signals encode time of the day remains enigmatic. Here we show that population-level Ca2+ signals predict hourly time, via a group decision-making mechanism coupled with a spatially modular time feature representation in the SCN. Specifically, we developed a high-speed dual-view two-photon microscope for volumetric Ca2+ imaging of up to 9000 GABAergic neurons in adult SCN slices, and leveraged machine learning methods to capture emergent properties from multiscale Ca2+ signals as a whole. We achieved hourly time prediction by polling random cohorts of SCN neurons, reaching 99.0% accuracy at a cohort size of 900. Further, we revealed that functional neuron subtypes identified by contrastive learning tend to aggregate separately in the SCN space, giving rise to bilaterally symmetrical ripple-like modular patterns. Individual modules represent distinctive time features, such that a module-specifically learned time predictor can also accurately decode hourly time from random polling of the same module. These findings open a new paradigm in deciphering the design principle of the biological clock at the system level.

13.
Adv Mater ; : e2314062, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558210

ABSTRACT

Doping is a crucial strategy to enhance the performance of various organic electronic devices. However, in many cases, the random distribution of dopants in conjugated polymers leads to the disruption of the polymer microstructure, severely constraining the achievable performance of electronic devices. Here, it is shown that by ion-exchange doping polythiophene-based P[(3HT)1-x-stat-(T)x] (x = 0 (P1), 0.12 (P2), 0.24 (P3), and 0.36 (P4)), remarkably high electrical conductivity of >400 S cm-1 and power factor of >16 µW m-1 K-2 are achieved for the random copolymer P3, ranking it among highest ever reported for unaligned P3HT-based films, significantly higher than that of P1 (<40 S cm-1, <4 µW m-1 K-2). Although both polymers exhibit comparable field-effect transistor hole mobilities of ≈0.1 cm2 V-1 s-1 in the pristine state, after doping, Hall effect measurements indicate that P3 exhibits a large Hall mobility up to 1.2 cm2 V-1 s-1, significantly outperforming that of P1 (0.06 cm2 V-1 s-1). GIWAXS measurement determines that the in-plane π-π stacking distance of doped P3 is 3.44 Å, distinctly shorter than that of doped P1 (3.68 Å). These findings contribute to resolving the long-standing dopant-induced-disorder issues in P3HT and serve as an example for achieving fast charge transport in highly doped polymers for efficient electronics.

14.
Nanotechnology ; 35(32)2024 May 21.
Article in English | MEDLINE | ID: mdl-38688249

ABSTRACT

Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoß, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Bone Regeneration , Indoles , Nanofibers , Osteogenesis , Polymers , Tissue Engineering , Tissue Scaffolds , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/metabolism , Nanofibers/chemistry , Bone Regeneration/drug effects , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Tissue Engineering/methods , Osteogenesis/drug effects , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Cell Line , Immobilized Proteins/pharmacology , Immobilized Proteins/chemistry , Cell Survival/drug effects
15.
Adv Mater ; : e2310480, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669281

ABSTRACT

Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm-1, which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 µW m-1 K-2 are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.

16.
J Am Chem Soc ; 146(17): 12087-12099, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647488

ABSTRACT

Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.


Subject(s)
Fluorocarbons , Water , Fluorocarbons/chemistry , Water/chemistry , Mice , Animals , Neoplasms/drug therapy , Free Radicals/chemistry , Humans , Hydroxyl Radical/chemistry , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
17.
Nat Commun ; 15(1): 2471, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503787

ABSTRACT

The development of neuromorphic visual systems has recently gained momentum due to their potential in areas such as autonomous vehicles and robotics. However, current machine visual systems based on silicon technology usually contain photosensor arrays, format conversion, memory and processing modules. As a result, the redundant data shuttling between each unit, resulting in large latency and high-power consumption, seriously limits the performance of neuromorphic vision chips. Here, we demonstrate an artificial neural network (ANN) architecture based on an integrated 2D MoS2/Ag nanograting phototransistor array, which can simultaneously sense, pre-process and recognize optical images without latency. The pre-processing function of the device under photoelectric synergy ensures considerable improvement of efficiency and accuracy of subsequent image recognition. The comprehensive performance of the proof-of-concept device demonstrates great potential for machine vision applications in terms of large dynamic range (180 dB), high speed (500 ns) and low energy consumption per spike (2.4 × 10-17 J).

18.
Sci Rep ; 14(1): 6167, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38486009

ABSTRACT

The management of surgical instruments is related to the safety and efficiency of surgical operations, and a surgical instruments information management system (SIIMS) has been developed. The aim of the current study is to explore the application value of the SIIMS in sports medicine specialty. A set of self-developed SIIMS for sports medicine surgeries was applied to the study. The application value of the SIIMS was verified by comparing the safety and efficiency of instrument manipulation before and after its application, with instrument accidents, instrument repair rate, instrument scrap rate and instrument use efficiency as indicators. Through the application of the SIIMS, the incidence of surgical instrument accidents decreased from 3.7 times to 1.8 times (P = 0.02), the number of instrument repair decreased from 7.7 times to 2.9 times (P = 0.00), and the number of scrapped instruments decreased from 5.1 to 2.3 (P = 0.03), when referred to per thousand operations. Before and after the application of the SIIMS, the average instrument use efficiency was 74.0% ± 3.3% and 88.2% ± 4.4%, respectively, with statistically significant difference (P = 0.00). The application of the SIIMS in sports medicine specialty is helpful to the fine management of surgical instruments, improve surgical safety and instrument use efficiency.


Subject(s)
Information Management , Surgical Instruments
19.
Cell Mol Immunol ; 21(5): 510-526, 2024 May.
Article in English | MEDLINE | ID: mdl-38472357

ABSTRACT

Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Extracellular Traps , Mice, Knockout , Neutrophils , Respiratory Distress Syndrome , Sepsis , Animals , Sepsis/complications , Humans , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/pathology , Mice , Extracellular Traps/metabolism , Male , Disease Models, Animal , Protein-Arginine Deiminase Type 4/metabolism , Mice, Inbred C57BL , Ubiquitination , Female , Peroxidase/metabolism , Mutation
20.
Front Microbiol ; 15: 1354936, 2024.
Article in English | MEDLINE | ID: mdl-38380102

ABSTRACT

Rabies is a fatal zoonotic disease that poses a threat to public health. Rabies virus (RABV) is excreted in the saliva of infected animals, and is primarily transmitted by bite. The role of the salivary glands in virus propagation is significant, but has been less studied in the pathogenic mechanisms of RABV. To identify functionally important genes in the salivary glands, we used RNA sequencing (RNA-seq) to establish and analyze mRNA expression profiles in parotid tissue infected with two RABV strains, CVS-11 and PB4. The biological functions of differentially expressed genes (DEGs) were determined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, which revealed 3,764 DEGs (678 up-regulated and 3,086 down-regulated) in the CVS-11 infected group and 4,557 DEGs (874 up-regulated and 3,683 down-regulated) in the PB4 infected group. Various biological processes are involved, including the salivary secretion pathway and the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling pathway. This study provides the first mapping of the transcriptome changes in response to RABV infection in parotid tissue, offering new insights into the study of RABV-affected salivary gland function and RABV pathogenic mechanisms in parotid tissue. The salivary gland-enriched transcripts may be potential targets of interest for rabies disease control.

SELECTION OF CITATIONS
SEARCH DETAIL
...