Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
ACS Nano ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787298

ABSTRACT

Device-level implementation of soft materials for energy conversion and thermal management demands a comprehensive understanding of their thermal conductivity and elastic modulus to mitigate thermo-mechanical challenges and ensure long-term stability. Thermal conductivity and elastic modulus are usually positively correlated in soft materials, such as amorphous macromolecules, which poses a challenge to discover materials that are either soft and thermally conductive or hard and thermally insulative. Here, we show anomalous correlations of thermal conductivity and elastic modulus in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIP) by engineering the molecular interactions between organic cations. By replacing conventional alkyl-alkyl and aryl-aryl type organic interactions with mixed alkyl-aryl interactions, we observe an enhancement in elastic modulus with a reduction in thermal conductivity. This anomalous dependence provides a route to engineer thermal conductivity and elastic modulus independently and a guideline to search for better thermal management materials. Further, introducing chirality into the organic cation induces a molecular packing that leads to the same thermal conductivity and elastic modulus regardless of the composition across all half-chiral 2D HOIPs. This finding provides substantial leeway for further investigations in chiral 2D HOIPs to tune optoelectronic properties without compromising thermal and mechanical stability.

2.
Int J Biol Macromol ; 271(Pt 2): 132376, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750865

ABSTRACT

Diabetes is a complex metabolic disease and islet transplantation is a promising approach for the treatment of diabetes. Unfortunately, the transplanted islets at the subcutaneous site are also affected by various adverse factors such as poor vascularization and hypoxia. In this study, we utilize biocompatible copolymers l-lactide and D,l-lactide to manufacture a biomaterial scaffold with a mesh-like structure via 3D printing technology, providing a material foundation for encapsulating pancreatic islet cells. The scaffold maintains the sustained release of vascular endothelial growth factor (VEGF) and a slow release of oxygen from calcium peroxide (CPO), thereby regulating the microenvironment for islet survival. This helps to improve insufficient subcutaneous vascularization and reduce islet death due to hypoxia post-transplantation. By pre-implanting VEGF-CPO scaffolds subcutaneously into diabetic rats, a sufficiently vascularized site is formed, thereby ensuring early survival of transplanted islets. In a word, the VEGF-CPO scaffold shows good biocompatibility both in vitro and in vivo, avoids the adverse effects on the implanted islets, and displays promising clinical transformation prospects.

3.
Int Immunopharmacol ; 134: 112185, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701540

ABSTRACT

Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.

4.
Sci Adv ; 10(18): eadn3240, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701205

ABSTRACT

The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current.

5.
Int J Cancer ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783577

ABSTRACT

Management of multiple primary lung cancer (MPLC) remains challenging, partly due to its increasing incidence, especially with the significant rise in cases of multiple lung nodules caused by low-dose computed tomography screening. Moreover, the indefinite pathogenesis, diagnostic criteria, and treatment selection add to the complexity. In recent years, there have been continuous efforts to dissect the molecular characteristics of MPLC and explore new diagnostic approaches as well as treatment modalities, which will be reviewed here, with a focus on newly emerging evidence and future perspectives, hope to provide new insights into the management of MPLC and serve as inspiration for future research related to MPLC.

6.
Biosensors (Basel) ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38785730

ABSTRACT

Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.


Subject(s)
Microfluidics , Stem Cells , Stem Cells/cytology , Humans , Animals , Drug Delivery Systems
7.
CNS Neurosci Ther ; 30(5): e14778, 2024 May.
Article in English | MEDLINE | ID: mdl-38801174

ABSTRACT

AIMS: Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS: An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS: Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE: SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.


Subject(s)
Apoptosis Inducing Factor , Disease Models, Animal , Drug Resistant Epilepsy , Membrane Glycoproteins , Nerve Tissue Proteins , Rats, Sprague-Dawley , Animals , Rats , Apoptosis Inducing Factor/metabolism , Male , Nerve Tissue Proteins/metabolism , Drug Resistant Epilepsy/metabolism , Drug Resistant Epilepsy/drug therapy , Membrane Glycoproteins/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Anticonvulsants/pharmacology
8.
Environ Int ; 188: 108765, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38810495

ABSTRACT

Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.

9.
Sci Rep ; 14(1): 12119, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802644

ABSTRACT

Despite its effectiveness in treating diabetic cardiomyopathy (DCM), Qigui Qiangxin Mixture (QGQXM) remains unclear in terms of its active ingredients and specific mechanism of action. The purpose of this study was to explore the active ingredients and mechanism of action of QGQXM in the treatment of DCM through the comprehensive strategy of serum pharmacology, network pharmacology and combined with experimental validation. The active ingredients of QGQXM were analyzed using Ultra-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS). Network pharmacology was utilized to elucidate the mechanism of action of QGQXM for the treatment of DCM. Finally, in vivo validation was performed by intraperitoneal injection of STZ combined with high-fat feeding-induced DCM rat model. A total of 25 active compounds were identified in the drug-containing serum of rats, corresponding to 121 DCM-associated targets. GAPDH, TNF, AKT1, PPARG, EGFR, CASP3, and HIF1 were considered as the core therapeutic targets. Enrichment analysis showed that QGQXM mainly treats DCM by regulating PI3K-AKT, MAPK, mTOR, Insulin, Insulin resistance, and Apoptosis signaling pathways. Animal experiments showed that QGQXM improved cardiac function, attenuated the degree of cardiomyocyte injury and fibrosis, and inhibited apoptosis in DCM rats. Meanwhile, QGQXM also activated the PI3K/AKT signaling pathway, up-regulated Bcl-2, and down-regulated Caspase9, which may be an intrinsic mechanism for its anti-apoptotic effect. This study preliminarily elucidated the mechanism of QGQXM in the treatment of DCM and provided candidate compounds for the development of new drugs for DCM.


Subject(s)
Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Network Pharmacology , Animals , Drugs, Chinese Herbal/pharmacology , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Rats , Male , Chromatography, High Pressure Liquid , Rats, Sprague-Dawley , Disease Models, Animal , Mass Spectrometry/methods , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy
10.
J Clin Oncol ; : JCO2302009, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710003

ABSTRACT

PURPOSE: This phase 3 trial aimed to compare the efficacy and safety of capecitabine or capecitabine plus oxaliplatin (XELOX) with those of fluorouracil plus cisplatin (PF) in definitive concurrent chemoradiotherapy (DCRT) for inoperable locally advanced esophageal squamous cell carcinoma (ESCC). METHODS: Patients were randomly assigned to receive two cycles of capecitabine, XELOX, or PF along with concurrent intensity-modulated radiation therapy. Patients in each arm were again randomly assigned to receive two cycles of consolidation chemotherapy or not. The primary end points were 2-year overall survival (OS) rate and incidence of grade ≥3 adverse events (AEs). RESULTS: A total of 246 patients were randomly assigned into the capecitabine (n = 80), XELOX (n = 85), and PF (n = 81) arms. In capecitabine, XELOX, and PF arms, the 2-year OS rate was 75%, 66.7%, and 70.9% (capecitabine v PF: hazard ratio [HR], 0.91 [95% CI, 0.61 to 1.35]; nominal P = .637; XELOX v PF: 0.86 [95% CI, 0.58 to 1.27]; P = .444); the median OS was 40.9 (95% CI, 34.4 to 49.9), 41.9 (95% CI, 28.6 to 52.1), and 35.4 (95% CI, 30.4 to 45.4) months. The incidence of grade ≥3 AEs during the entire treatment was 28.8%, 36.5%, and 45.7%, respectively. Comparing the consolidation chemotherapy with the nonconsolidation chemotherapy groups, the median OS was 41.9 (95% CI, 34.6 to 52.8) versus 36.9 (95% CI, 28.5 to 44) months (HR, 0.71 [95% CI, 0.52 to 0.99]; nominal P = .0403). CONCLUSION: Capecitabine or XELOX did not significantly improve the 2-year OS rate over PF in DCRT for inoperable locally advanced ESCC. Capecitabine showed a lower incidence of grade ≥3 AEs than PF did.

11.
Small ; : e2310416, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660815

ABSTRACT

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

12.
Anal Chem ; 96(17): 6588-6598, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619494

ABSTRACT

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Subject(s)
Food Microbiology , Listeria monocytogenes , Machine Learning , Listeria monocytogenes/isolation & purification , Cronobacter sakazakii/isolation & purification , Silicon Dioxide/chemistry , Point-of-Care Systems , Animals , Milk/microbiology , Milk/chemistry , Biosensing Techniques , Neural Networks, Computer
13.
iScience ; 27(4): 109456, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38591005

ABSTRACT

Spermiogenesis defines the final phase of male germ cell differentiation. While multiple deubiquitinating enzymes have been linked to spermiogenesis, the impacts of deubiquitination on spermiogenesis remain poorly characterized. Here, we investigated the function of UAF1 in mouse spermiogenesis. We selectively deleted Uaf1 in premeiotic germ cells using the Stra8-Cre knock-in mouse strain (Uaf1 sKO), and found that Uaf1 is essential for spermiogenesis and male fertility. Further, UAF1 interacts and colocalizes with USP1 in the testes. Conditional knockout of Uaf1 in testes results in disturbed protein levels and localization of USP1, suggesting that UAF1 regulates spermiogenesis through the function of the deubiquitinating enzyme USP1. Using tandem mass tag-based proteomics, we identified that conditional knockout of Uaf1 in the testes results in reduced levels of proteins that are essential for spermiogenesis. Thus, we conclude that the UAF1/USP1 deubiquitinase complex is essential for normal spermiogenesis by regulating the levels of spermiogenesis-related proteins.

14.
J Hazard Mater ; 471: 134260, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678722

ABSTRACT

Pyrrolizidine alkaloids (PAs), released into the environment by donor plants, are absorbed by crops or transported by animals, posing a global food safety concern. Photolysis is an effective way to eliminate harmful substances in the environment or food. Photolysis happens as PAs move among plants, environment and crops. In this study, we first investigated the photolysis and hydrolysis of 15 PAs and identified their degradation products via ultra-high performance liquid chromatography and Q-Exactive Orbitrap mass spectrometry. PAs were degraded under UV radiation but minimally affected by visible light from a xenon lamp, and solvent pH had little impact on their photolysis. PAs were stable in neutral and acidic solutions but degraded by 50% within 24 h in alkaline conditions. The degradation products of PAs were mainly PAs/PANOs isomers and some minor byproducts. Cytotoxicity and computational analysis revealed isomers had similar toxicity, with minor products being less toxic. This study is a precursor for revealing the potential PAs degradation dynamics in the environment and food products, providing a reference for systematic evaluations of potential health and ecological risks of their degradation products.


Subject(s)
Mass Spectrometry , Photolysis , Pyrrolizidine Alkaloids , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/toxicity , Chromatography, High Pressure Liquid , Hydrolysis , Ultraviolet Rays , Humans
15.
Front Psychol ; 15: 1358603, 2024.
Article in English | MEDLINE | ID: mdl-38586297

ABSTRACT

The paper investigates language transfers in third language acquisition of Chinese by native German and English speakers at intermediate level. Subjects are divided into two groups and complete a Grammaticality Judgment and Correction Task through a behavioral experiment online. The results from multiple sources show that: (1) both L1 and L2 are sources of language transfers and the perceived crosslinguistic similarity of abstract structural properties serves as the main reason; (2) language transfers can be non-facilitative on L3 learning; (3) as L3 proficiency level improves, the less likely learners are to be affected by non-facilitative language transfers in L3 learning, but it may not disappear completely; (4) the background language with higher proficiency level is more likely to impose language transfers in L3 learning. The research suggests that language transfers in TLA are simultaneously regulated by a number of factors, such as similarities of abstract structural properties between background languages and L3, as well as language proficiency levels. At the end, we discuss the application of the results to Chinese language teaching.

16.
Molecules ; 29(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611920

ABSTRACT

Six new 2α-hydroxy ursane triterpenoids, 3α-cis-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (1), 3α-trans-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (2), 3α-trans-p-coumaroyloxy-2α-hydroxy-12-ursen-28-oic acid (3), 3ß-trans-p-coumaroyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (4), 3ß-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (5), and 3α-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (6), along with eleven known triterpenoids (7-17), were isolated from the leaves of Diospyros digyna. Their chemical structures were elucidated by comprehensive analysis of UV, IR, HRESIMS, and NMR spectra. All the isolated compounds were evaluated for their PTP1B inhibitory activity. 3ß-O-trans-feruloyl-2α-hydroxy-urs-12-en-28-oic acid (13) showed the best inhibition activity with an IC50 value of 10.32 ± 1.21 µM. The molecular docking study found that the binding affinity of compound 13 for PTP1B was comparable to that of oleanolic acid (positive control).


Subject(s)
Diospyros , Triterpenes , Molecular Docking Simulation , Plant Leaves , Hydroxy Acids , Triterpenes/pharmacology
17.
Adv Sci (Weinh) ; : e2402532, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655846

ABSTRACT

The efficient synthesis of chiral 2,2-disubstituted indolin-3-ones is of great importance due to its significant synthetic and biological applications. However, catalytic enantioselective methods for de novo synthesis of such heterocycles remain scarce. Herein, a novel cyclizative rearrangement of readily available anilines and vicinal diketones for the one-step construction of enantioenriched 2,2-disubstituted indolin-3-ones is presented. The reaction proceeds through a self-sorted [3+2] heteroannulation/regioselective dehydration/1,2-ester shift process. Only chiral phosphoric acid is employed to promote the entire sequence and simplify the manipulation of this protocol. Various common aniline derivatives are successfully applied to asymmetric synthesis as 1,3-binuclephiles for the first time. Remarkably, the observed stereoselectivity is proposed to originate from an amine-directed regio- and enantioselective ortho-Csp2-H addition of the anilines to the ketones. A range of synthetic transformations of the resulting products are demonstrated as well.

18.
ChemSusChem ; : e202400504, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666390

ABSTRACT

Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.

19.
Bioelectrochemistry ; 158: 108714, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653106

ABSTRACT

G-quadruplex (G4) DNA is present in human telomere oligonucleotide sequences. Oxidative damage to telomeric DNA accelerates telomere shortening, which is strongly associated with aging and cancer. Most of the current analyses on oxidative DNA damage are based on ds-DNA. Here, we developed a electrochemiluminescence (ECL) probe for enhanced recognition of oxidative damage in G4-DNA based on DNA-mediated charge transfer (CT), which could specifically recognize damaged sites depending on the position of 8-oxoguanine (8-oxoG). First, a uniform G4-DNA monolayer interface was fabricated; the G4-DNA mediated CT properties were examined using an iridium(III) complex [Ir(ppy)2(pip)]PF6 stacked with G4-DNA as an indicator. The results showed that G4-DNA with 8-oxoG attenuated DNA CT. The topological effects of oxidative damage at different sites of G4-DNA and their effects on DNA CT were revealed. The sensing platform was also used for the sensitive and quantitative detection of 8-oxoG in G4-DNA, with a detection limit of 28.9 fmol. Overall, these findings present a sensitive platform to study G4-DNA structural and stability changes caused by oxidative damage as well as the specific and quantitative detection of oxidation sites. The different damage sites in the G-quadruplex could provide detailed clues for understanding the function of G4-associated telomere functional enzymes.


Subject(s)
DNA Damage , DNA , G-Quadruplexes , Guanine , DNA/chemistry , Guanine/analogs & derivatives , Guanine/chemistry , Humans , Oxidation-Reduction , Oxidative Stress , Biosensing Techniques/methods , Luminescent Measurements/methods , Limit of Detection , Electrochemical Techniques/methods
20.
Phytomedicine ; 129: 155622, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677272

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) is a destructive adverse reaction of ischemic stroke, leading to high disability and mortality rates. Salvia miltiorrhiza Bge. (Danshen, DS) processed with porcine cardiac blood (PCB-DS), a characteristic processed product, has promising anti-ischemic effects. However, the underlying mechanism of PCB-DS against CIRI remains unclear. PURPOSE: Ferroptosis is demonstrated to be involved in CIRI. The aim of this study was to explore the molecular mechanism underlying PCB-DS inhibited GLRX5-mediated ferroptosis alleviating CIRI, which was different from DS. METHODS: Quality evaluation of PCB-DS and DS was conducted by UPLC. Pharmacological activities of PCB-DS and DS against CIRI were compared using neurobehavioral scores, infarct volume, proinflammatory factors, and pathological examinations. Proteomics was employed to explore the potential specific mechanism of PCB-DS against CIRI, which was different from DS. Based on the differential protein GLRX5, ferroptosis-related iron, GSH, MDA, SOD, ROS, liperfluo, and mitochondrial morphology were analyzed. Then, the proteins of GLRX5-mediated iron-starvation response and SLC7A11/GPX4 were analyzed. Finally, OGD/R-induced SH-SY5Y cells upon GLRX5 silencing were constructed to demonstrate that PCB-DS improved CIRI by GLRX5-mediated ferroptosis. RESULTS: PCB-DS better alleviated CIRI through decreasing neurological score, reducing the infarct volume, and suppressing the release of inflammatory cytokines than DS. Proteomics suggested that PCB-DS may ameliorate CIRI by inhibiting GLRX5-mediated ferroptosis, which was different from DS. PCB-DS reversed the abnormal mitochondrial morphology, iron, GSH, MDA, SOD, ROS, and liperfluo to inhibit ferroptosis in vitro and in vivo. PCB-DS directly activated GLRX5 suppressing the iron-starvation response and downregulated the SLC7A11/GPX4 signaling pathway to inhibit ferroptosis. Finally, silencing GLRX5 activated the iron-starvation response in SH-SY5Y cells and PCB-DS unimproved OGD/R injury upon GLRX5 silencing. CONCLUSION: Different from DS, PCB-DS suppressed ferroptosis to alleviate CIRI through inhibiting GLRX5-mediated iron-starvation response. These findings give a comprehensive understanding of the molecular mechanism underlying the effect of PCB-DS against CIRI and provide evidence to assess the product in clinical studies.


Subject(s)
Ferroptosis , Reperfusion Injury , Salvia miltiorrhiza , Animals , Ferroptosis/drug effects , Reperfusion Injury/drug therapy , Salvia miltiorrhiza/chemistry , Swine , Male , Drugs, Chinese Herbal/pharmacology , Mice , Glutaredoxins/metabolism , Humans , Brain Ischemia/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...