Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1365231, 2024.
Article in English | MEDLINE | ID: mdl-38979499

ABSTRACT

Background: Neurodevelopmental disorders (NDDs) can cause debilitating impairments in social cognition and aberrant functional connectivity in large-scale brain networks, leading to social isolation and diminished everyday functioning. To facilitate the treatment of social impairments, animal models of NDDs that link N- methyl-D-aspartate receptor (NMDAR) hypofunction to social deficits in adulthood have been used. However, understanding the etiology of social impairments in NDDs requires investigating social changes during sensitive windows during development. Methods: We examine social behavior during adolescence using a translational mouse model of NMDAR hypofunction (SR-/-) caused by knocking out serine racemase (SR), the enzyme needed to make D-serine, a key NMDAR coagonist. Species-typical social interactions are maintained through brain-wide neural activation patterns; therefore, we employed whole-brain cFos activity mapping to examine network-level connectivity changes caused by SR deletion. Results: In adolescent SR-/- mice, we observed disinhibited social behavior toward a novel conspecific and rapid social habituation toward familiar social partners. SR-/- mice also spent more time in the open arm of the elevated plus maze which classically points to an anxiolytic behavioral phenotype. These behavioral findings point to a generalized reduction in anxiety-like behavior in both social and non-social contexts in SR-/- mice; importantly, these findings were not associated with diminished working memory. Inter-regional patterns of cFos activation revealed greater connectivity and network density in SR-/- mice compared to controls. Discussion: These results suggest that NMDAR hypofunction - a potential biomarker for NDDs - can lead to generalized behavioral disinhibition in adolescence, potentially arising from disrupted communication between and within salience and default mode networks.

2.
Neurosci Biobehav Rev ; 161: 105651, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579901

ABSTRACT

GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.


Subject(s)
Brain , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Humans , Animals , Brain/growth & development , Brain/metabolism , Receptors, GABA-A/metabolism , GABAergic Neurons/physiology , GABAergic Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...