Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 362
Filter
1.
World J Gastrointest Surg ; 16(6): 1548-1557, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983331

ABSTRACT

BACKGROUND: Laparoscopic low anterior resection (LLAR) has become a mainstream surgical method for the treatment of colorectal cancer, which has shown many advantages in the aspects of surgical trauma and postoperative rehabilitation. However, the effect of surgery on patients' left coronary artery and its vascular reconstruction have not been deeply discussed. With the development of medical imaging technology, 3D vascular reconstruction has become an effective means to evaluate the curative effect of surgery. AIM: To investigate the clinical value of preoperative 3D vascular reconstruction in LLAR of rectal cancer with the left colic artery (LCA) preserved. METHODS: A retrospective cohort study was performed to analyze the clinical data of 146 patients who underwent LLAR for rectal cancer with LCA preservation from January to December 2023 in our hospital. All patients underwent LLAR of rectal cancer with the LCA preserved, and the intraoperative and postoperative data were complete. The patients were divided into a reconstruction group (72 patients) and a nonreconstruction group (74 patients) according to whether 3D vascular reconstruction was performed before surgery. The clinical features, operation conditions, complications, pathological results and postoperative recovery of the two groups were collected and compared. RESULTS: A total of 146 patients with rectal cancer were included in the study, including 72 patients in the reconstruction group and 74 patients in the nonreconstruction group. There were 47 males and 25 females in the reconstruction group, aged (59.75 ± 6.2) years, with a body mass index (BMI) (24.1 ± 2.2) kg/m2, and 51 males and 23 females in the nonreconstruction group, aged (58.77 ± 6.1) years, with a BMI (23.6 ± 2.7) kg/m2. There was no significant difference in the baseline data between the two groups (P > 0.05). In the submesenteric artery reconstruction group, 35 patients were type I, 25 patients were type II, 11 patients were type III, and 1 patient was type IV. There were 37 type I patients, 24 type II patients, 12 type III patients, and 1 type IV patient in the nonreconstruction group. There was no significant difference in arterial typing between the two groups (P > 0.05). The operation time of the reconstruction group was 162.2 ± 10.8 min, and that of the nonreconstruction group was 197.9 ± 19.1 min. Compared with that of the reconstruction group, the operation time of the two groups was shorter, and the difference was statistically significant (t = 13.840, P < 0.05). The amount of intraoperative blood loss was 30.4 ± 20.0 mL in the reconstruction group and 61.2 ± 26.4 mL in the nonreconstruction group. The amount of blood loss in the reconstruction group was less than that in the control group, and the difference was statistically significant (t = -7.930, P < 0.05). The rates of anastomotic leakage (1.4% vs 1.4%, P = 0.984), anastomotic hemorrhage (2.8% vs 4.1%, P = 0.672), and postoperative hospital stay (6.8 ± 0.7 d vs 7.0 ± 0.7 d, P = 0.141) were not significantly different between the two groups. CONCLUSION: Preoperative 3D vascular reconstruction technology can shorten the operation time and reduce the amount of intraoperative blood loss. Preoperative 3D vascular reconstruction is recommended to provide an intraoperative reference for laparoscopic low anterior resection with LCA preservation.

2.
J Med Chem ; 67(13): 10848-10874, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38912753

ABSTRACT

Bifunctional conjugates targeting PD-L1/PARP7 were designed, synthesized, and evaluated for the first time. Compounds B3 and C6 showed potent activity against PD-1/PD-L1 interaction (IC50 = 0.426 and 0.342 µM, respectively) and PARP7 (IC50 = 2.50 and 7.05 nM, respectively). They also displayed excellent binding affinity with hPD-L1, approximately 100-200-fold better than that of hPD-1. Both compounds restored T-cell function, leading to the increase of IFN-γ secretion. In the coculture assay, B3 and C6 enhanced the killing activity of MDA-MB-231 cells by Jurkat T cells in a concentration-dependent manner. Furthermore, B3 and C6 displayed significant in vivo antitumor efficacy in a melanoma B16-F10 tumor mouse model, more than 5.3-fold better than BMS-1 (a PD-L1 inhibitor) and RBN-2397 (a PARP7i clinical candidate) at the dose of 25 mg/kg, without observable side effects. These results provide valuable insight and understanding for developing bifunctional conjugates for potential anticancer therapy.


Subject(s)
Antineoplastic Agents , B7-H1 Antigen , Immunotherapy , Humans , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Cell Line, Tumor , Mice, Inbred C57BL , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy
3.
J Gene Med ; 26(6): e3693, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860366

ABSTRACT

BACKGROUND: Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC. METHODS: An HCC model was established in male Sprague-Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of Il17a was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses. RESULTS: The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing Fap in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs. CONCLUSIONS: The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.


Subject(s)
Carcinoma, Hepatocellular , Hepatic Stellate Cells , Interleukin-17 , Liver Neoplasms , Animals , Humans , Male , Rats , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Models, Animal , Endopeptidases/metabolism , Endopeptidases/genetics , Gene Expression Regulation, Neoplastic , Hepatic Stellate Cells/metabolism , Interleukin-17/metabolism , Interleukin-17/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Rats, Sprague-Dawley , Tumor Microenvironment
4.
J Mol Med (Berl) ; 102(7): 831-840, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38727748

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory vascular disease that occurs in the intima of large and medium-sized arteries with the immune system's involvement. It is a common pathological basis for high morbidity and mortality of cardiovascular diseases. Abnormal proliferation of apoptotic cells and necrotic cells leads to AS plaque expansion, necrotic core formation, and rupture. In the early stage of AS, macrophages exert an efferocytosis effect to engulf and degrade apoptotic, dead, damaged, or senescent cells by efferocytosis, thus enabling the regulation of the organism. In the early stage of AS, macrophages rely on this effect to slow down the process of AS. However, in the advanced stage of AS, the efferocytosis of macrophages within the plaque is impaired, which leads to the inability of macrophages to promptly remove the apoptotic cells (ACs) from the organism promptly, causing exacerbation of AS. Moreover, upregulation of CD47 expression in AS plaques also protects ACs from phagocytosis by macrophages, resulting in a large amount of residual ACs in the plaque, further expanding the necrotic core. In this review, we discussed the molecular mechanisms involved in the process of efferocytosis and how efferocytosis is impaired and regulated during AS, hoping to provide new insights for treating AS.


Subject(s)
Apoptosis , Atherosclerosis , Macrophages , Phagocytosis , Humans , Atherosclerosis/metabolism , Atherosclerosis/pathology , Animals , Macrophages/metabolism , Macrophages/immunology , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , CD47 Antigen/metabolism , Necrosis , Efferocytosis
5.
Food Res Int ; 184: 114262, 2024 May.
Article in English | MEDLINE | ID: mdl-38609241

ABSTRACT

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Subject(s)
Acetic Acid , Antioxidants , Chlorogenic Acid , Gallic Acid , Polyphenols
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 622-630, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646749

ABSTRACT

Soil nitrogen and phosphorus are two key elements limiting tree growth in subtropical areas. Understanding the regulation of soil microorganisms on nitrogen and phosphorus nutrition is beneficial to reveal maintenance mechanism of soil fertility in plantations. We analyzed the characteristics of soil nitrogen and phosphorus fractions, soil microbial community composition and function, and their relationship across three stands of two-layered Cunninghumia lanceolata + Phoebe bournei with different ages (4, 7 and 11 a) and the pure C. lanceolata plantation. The results showed that the contents of most soil phosphorus fractions increased with increasing two-layered stand age. The increase in active phosphorus fractions with increasing stand age was dominated by the inorganic phosphorus (9.9%-159.0%), while the stable phosphorus was dominated by the organic phosphorus (7.1%-328.4%). The content of soil inorganic and organic nitrogen also increased with increasing two-layered stand age, with NH4+-N and acid hydrolyzed ammonium N contents showing the strongest enhancement, by 152.9% and 80.2%, respectively. With the increase of stand age, the composition and functional groups of bacterial and fungal communities were significantly different, and the relative abundance of some dominant microbial genera (such as Acidothermus, Saitozyma and Mortierella) increased. The relative abundance of phosphorus solubilization and mineralization function genes, nitrogen nitrification function and aerobic ammonia oxidation function genes tended to increase. The functional taxa of fungi explained 48.9% variation of different phosphorus fractions. The conversion of pure plantations to two-layered mixed plantation affected soil phosphorus fractions transformation via changing the functional groups of saprophytes (litter saprophytes and soil saprophytes). Changes in fungal community composition explained 45.0% variation of different nitrogen fractions. Some key genera (e.g., Saitozyma and Mortierella) play a key role in promoting soil nitrogen transformation and accumulation. Therefore, the conversion of pure C. lanceolata plantation to two-layered C. lanceolata + P. bournei plantation was conducive to improving soil nitrogen and phosphorus availability. Bacteria and fungi played important roles in the transformation process of soil nitrogen and phosphorus forms, with greater contribution of soil fungi.


Subject(s)
Nitrogen , Phosphorus , Soil Microbiology , Soil , Phosphorus/analysis , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry , Cunninghamia/growth & development , China , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism
7.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504158

ABSTRACT

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Subject(s)
Breast Neoplasms , Carcinoma , Humans , Female , Breast Neoplasms/genetics , Apoptosis , Breast , Cell Proliferation/genetics , Prognosis , Tumor Microenvironment/genetics , Nuclear Pore Complex Proteins/genetics
8.
STAR Protoc ; 5(2): 102959, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38489272

ABSTRACT

Mechanosensation of plasma membrane tension by various mechanoresponsive machineries is crucial for regulating stem cell fate, cell adhesion, and tissue morphogenesis. Here, we present a protocol for evaluating plasma membrane stretching during the differentiation of Drosophila ovarian cyst using a fluorescent lipid tension reporter (Flipper-TR). We describe the steps for microphone setup, ovary dissection, Flipper-TR staining, fluorescence lifetime imaging microscopy imaging, and image processing and analysis. This protocol demonstrates the utility of Flipper-TR for investigating the impact of mechanical forces in living tissue. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Subject(s)
Cell Membrane , Microscopy, Fluorescence , Ovary , Animals , Female , Ovary/metabolism , Ovary/cytology , Microscopy, Fluorescence/methods , Cell Membrane/metabolism , Drosophila , Drosophila melanogaster/metabolism
9.
Plant Cell Environ ; 47(7): 2396-2409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38516697

ABSTRACT

Stomatal movement is critical for water transpiration, gas exchange, and responses to biotic stresses. Abscisic acid (ABA) induces stomatal closure to prevent water loss during drought. We report that Arabidopsis CIPK8 negatively regulates ABA-mediated stomatal closure and drought tolerance. CIPK8 is highly enriched in guard cells and transcriptionally induced by ABA. Functional loss of CIPK8 results in hypersensitive stomatal closure to ABA and enhanced drought tolerance. Guard cell-specific downregulation of CIPK8 mimics the phenotype of cipk8 whereas guard cell-specific expression of a constitutive active CIPK8 (CIPK8CA) has an opposite effect, suggesting a cell autonomous activity of CIPK8. CIPK8 physically interacts with CBL1 and CBL9. Functional loss of CBL1 and CBL9 mimics ABA-hypersensitive stomatal closure of cipk8 whereas abolishes the effect of CIPK8CA, indicating that CIPK8 and CBL1/CBL9 form a genetic module in ABA-responsive stomatal movement. SlCIPK7, the functional homolog of CIPK8 in tomato (Solanum lycopersicum), plays a similar role in ABA-responsive stomatal movement. Genomic editing of SlCIPK7 results in more drought-tolerant tomato, making it a good candidate for germplasm improvement.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Plant Stomata , Solanum lycopersicum , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Plant Stomata/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Arabidopsis/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants, Genetically Modified , Drought Resistance
10.
J Cancer ; 15(8): 2110-2122, 2024.
Article in English | MEDLINE | ID: mdl-38495508

ABSTRACT

Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.

11.
Zookeys ; 1191: 1-21, 2024.
Article in English | MEDLINE | ID: mdl-38357249

ABSTRACT

We examined new Allacta materials from Yunnan and Hainan Province, China, and discovered new species using both morphological and molecular species delimitation (ABGD) methods. Five new species are described: A.bifolium Li & Wang, sp. nov., A.hemiptera Li & Wang, sp. nov., A.lunulara Li & Wang, sp. nov., A.redacta Li & Wang, sp. nov., and A.unicaudata Li & Wang, sp. nov. All five species are placed under the hamifera species group. An updated key and checklist of Allacta species from China are provided.

12.
Eur J Med Res ; 29(1): 126, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365822

ABSTRACT

OBJECTIVE: To investigate the value of dual-energy dual-source computed tomography (DSCT) in evaluating pulmonary perfusion changes before and after radiotherapy for esophageal cancer, and its clinical use in the early diagnosis of acute radiation pneumonia (ARP). METHODS: We selected 45 patients with pathologically confirmed esophageal cancer who received radiotherapy (total irradiation dose of 60 Gy). Dual-energy DSCT scans were performed before and after radiotherapy and the normalized iodine concentrations (NIC) in the lung fields of the areas irradiated with doses of > 20 Gy, 10-20 Gy, 5-10 Gy, and < 5 Gy were measured. We also checked for the occurrence of ARP in the patients, and the differences in NIC values and NIC reduction rates before and after radiotherapy were calculated and statistically analyzed. RESULTS: A total of 16 of the 45 patients developed ARP. The NIC values in the lung fields of all patients decreased at different degrees after radiotherapy, and the NIC values in the area where ARP developed, decreased significantly. The rate of NIC reduction and incidence rate of ARP increased gradually with the increasing irradiation dose, and the inter-group difference in NIC reduction rate was statistically significant (P < 0.05). Based on the receiver operating characteristic (ROC) curve analysis, the areas under the curves of NIC reduction rate versus ARP occurrence in the V5-10 Gy, V10-20 Gy, and V> 20 Gy groups were 0.780, 0.808, and 0.772, respectively. Sensitivity of diagnosis was 81.3%, 75.0%, and 68.8% and the specificity was 65.5%, 82.8%, and 79.3%, when taking 12.50%, 16.50%, and 26.0% as the diagnostic thresholds, respectively. The difference in NIC values in the lung fields of V<5 Gy before and after radiotherapy was not statistically significant (P > 0.05). CONCLUSION: The dual-energy DSCT could effectively evaluate pulmonary perfusion changes after radiotherapy for esophageal cancer, and the NIC reduction rate was useful as a reference index to predict ARP and provide further reference for decisions in clinical practice.


Subject(s)
Acute Lung Injury , Esophageal Neoplasms , Iodine , Radiation Pneumonitis , Humans , Radiation Pneumonitis/diagnostic imaging , Tomography, X-Ray Computed/methods , Lung , ROC Curve , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy
13.
Int Wound J ; 21(3): e14743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38420721

ABSTRACT

Emergency craniotomy in patients with traumatic brain injury poses a significant risk for surgical site infections (SSIs). Understanding the risk factors and pathogenic characteristics of SSIs in this context is crucial for improving outcomes. This comprehensive retrospective analysis spanned from February 2020 to February 2023 at our institution. We included 25 patients with SSIs post-emergency craniotomy and a control group of 50 patients without SSIs. Data on various potential risk factors were collected, including demographic information, preoperative conditions, and intraoperative details. The BACT/ALERT3D Automated Bacterial Culture and Detection System was utilized for rapid bacterial pathogen identification. Statistical analyses included univariate and multivariate logistic regression to identify significant risk factors for SSIs. The study identified Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus as the most prevalent pathogens in SSIs. Significant risk factors for SSIs included the lack of preoperative antibiotic use, postoperative drainage tube placement, diabetes mellitus, and the incorporation of invasive procedures, all of which showed a significant association with SSIs in the univariate analysis. The multivariate analysis further highlighted the protective effect of preoperative antibiotics and the increased risks associated with anaemia, diabetes mellitus, postoperative drainage tube placement, and the incorporation of invasive procedures. Our research underscores the critical role of factors like insufficient preoperative antibiotics, postoperative drainage, invasive techniques, anaemia, and diabetes mellitus in elevating the risk of surgical site infections in traumatic brain injury patients undergoing emergency craniotomy. Enhanced focus on these areas is essential for improving surgical outcomes.


Subject(s)
Anemia , Brain Injuries, Traumatic , Diabetes Mellitus , Humans , Retrospective Studies , Surgical Wound Infection/diagnosis , Risk Factors , Craniotomy/adverse effects , Anti-Bacterial Agents/therapeutic use , Risk Assessment , Brain Injuries, Traumatic/complications
14.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338343

ABSTRACT

Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Infant , Aged , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Palivizumab/pharmacology , Palivizumab/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Anti-Retroviral Agents/therapeutic use
16.
Zookeys ; 1191: 339-367, 2024.
Article in English | MEDLINE | ID: mdl-38405678

ABSTRACT

Six Margattea species are established and described: three are cryptic species, namely, M.parabisignata Li & Che, sp. nov., M.semicircularis Li & Che, sp. nov., and M.forcipata Li & Che, sp. nov. They are distinguished from known species M.bisignata, M.spinifera, and M.paratransversa by their male genitalia with the aid of molecular species delimitation method (ABGD) using COI as the molecular marker. The other three new species are M.pedata Li & Che, sp. nov., M.undulata Li & Che, sp. nov., and M.bisphaerica Li & Che, sp. nov. Morphological and genitalia photographs of these new species of Margattea, as well as a key to the species of Margattea from China, are provided.

17.
Vaccine ; 42(5): 1136-1144, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38267332

ABSTRACT

BACKGROUND: Pneumococcal Diseases (PDs) remains a serious public health problem around the world and in China. Pneumococcal vaccination is the most cost-effective measure to prevent PDs. In 2021, the government of Weifang City, Shandong Province, China introduced a free dose of domestic 13-valent Pneumococcal Conjugate Vaccine (PCV 13) to vaccinate registered children aged 6 months-2 years. This study aimed to evaluate the vaccination rate of PCV13 in children aged under 5 years before and after the vaccination program to provide evidences for further improving the prevention and control strategy for PDs. METHODS: We collected data from the children's vaccination information management system in Weifang City and analyzed the PCV13 vaccination coverage and characteristics in all vaccination clinics of Weifang City for children aged under 5 years. We compared the differences in vaccination rates by gender, birth year, manufacturer, and county before and after innovative immunization strategy. RESULTS: Among the included 593,784 children aged under 5 years, the PCV13 vaccination rate in Weifang was generally low before the innovative immunization strategy. Urban children had a higher PCV13 coverage than rural children (P < 0.001), and parents tended to vaccinate their children with imported PCV13.The full vaccination rate for domestic and imported PCV13 was 0.67 % and 1.70 %, respectively. After the vaccination program, the PCV13 coverage of children increased significantly in all counties within Weifang City (P < 0.001), especially for children above 12 months of age. Most parents preferred to vaccinate their children with domestic PCV13, and the full vaccination rate of domestic and imported PCV13 was 6.59 % and 0.16 %, respectively. CONCLUSIONS: The vaccination rate of PCV13 in children is still much lower than the global average, posting a severe health challenge that needs to be addressed thoroughly. To improve the prevention and control strategy for PDs, it is recommended to continue to explore other relevant incentives based on the innovative immunization strategy. Furthermore, it is also recommended that China should incorporate PCV13 into the National Immunization Programs (NIP) as soon as possible.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Child , Humans , Infant , Child, Preschool , Retrospective Studies , Vaccination Coverage , Vaccination , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , China , Vaccines, Conjugate
18.
Mini Rev Med Chem ; 24(4): 391-402, 2024.
Article in English | MEDLINE | ID: mdl-37259932

ABSTRACT

Canopy FGF signaling regulator 2 (CNPY2) is a novel angiogenic growth factor. In recent years, increasing evidence highlights that CNPY2 has important functions in health and disease. Many new blood vessels need to be formed to meet the nutrient supply in the process of tumor growth. CNPY2 can participate in the development of tumors by promoting angiogenesis. CNPY2 also enhances neurite outgrowth in neurologic diseases and promotes cell proliferation and tissue repair, thereby improving cardiac function in cardiovascular diseases. Regrettably, there are few studies on CNPY2 in various diseases. At the same time, its biological function and molecular mechanism in the process and development of disease are still unclear. This paper reviews the recent studies on CNPY2 in cervical cancer, renal cell carcinoma, prostate cancer, colorectal cancer, lung cancer, gastric cancer, hepatocellular carcinoma, cerebral ischemia-reperfusion injury, spinal cord ischemia-reperfusion injury, Parkinson's disease, ischemic heart disease, myocardial ischemiareperfusion injury, myocardial infarction, heart failure, and non-alcoholic fatty liver disease. The biological function and molecular mechanism of CNPY2 in these diseases have been summarized in this paper. Many drugs that play protective roles in tumors, cardiovascular diseases, non-alcoholic fatty liver disease, and neurologic diseases by targeting CNPY2, have also been summarized in this paper. In addition, the paper also details the biological functions and roles of canopy FGF signaling regulator 1 (CNPY1), canopy FGF signaling regulator 3 (CNPY3), canopy FGF signaling regulator 4 (CNPY4), and canopy FGF signaling regulator 5 (CNPY5). The mechanism and function of CNPY2 should be continued to study in order to accelerate disease prevention in the future.


Subject(s)
Cardiovascular Diseases , Liver Neoplasms , Lung Neoplasms , Non-alcoholic Fatty Liver Disease , Reperfusion Injury , Male , Humans , Adaptor Proteins, Signal Transducing/metabolism , Lung Neoplasms/pathology
19.
World J Clin Cases ; 11(29): 7234-7241, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37946761

ABSTRACT

BACKGROUND: The occurrence of long-term bilioenteric anastomotic stenosis can readily induce liver atrophy and hyperplasia, thereby causing significant alterations in the anatomical and morphological aspects of the liver. This condition significantly hampers the accuracy of preoperative imaging diagnosis, while also exacerbating the complexity of surgical procedures and the likelihood of complications. CASE SUMMARY: A 60-year-old female patient was admitted to the hospital presenting with recurring epigastric pain accompanied by a high fever. The patient had a history of cholecystectomy, although the surgical records were not accessible. Based on preoperative imaging and laboratory examination, the initial diagnosis indicated the presence of intrahepatic calculi, abnormal right liver morphology, and acute cholangitis. However, during the surgical procedure, it was observed that both the left and right liver lobes exhibited evident atrophy and thinness. Additionally, there was a noticeable increase in the volume of the hepatic caudate lobe, and the original bilioenteric anastomosis was narrowed. The anastomosis underwent enlargement subsequent to hepatectomy. As a consequence of the presence of remaining stones in the caudate lobe, the second stage was effectively executed utilizing ultrasound-guided percutaneous transhepatic catheter drainage. Following the puncture, three days elapsed before the drain tip inadvertently perforated the liver, leading to the development of biliary panperitonitis, subsequently followed by pulmonary infection. The patient and her family strongly refused operation, and she died. CONCLUSION: The hepatic atrophy-hypertrophy complex induces notable alterations in the anatomical structure, thereby posing a substantial challenge in terms of imaging diagnosis and surgical procedures. Additionally, the long-term presence of hepatic fibrosis changes heightens the likelihood of complications arising from puncture procedures.

20.
Sensors (Basel) ; 23(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37837024

ABSTRACT

Watermarking is an excellent solution to protect multimedia privacy but will be damaged by attacks such as noise adding, image filtering, compression, and especially scaling and cutting. In this paper, we propose a watermarking scheme to embed the watermark in the DWT-DCT composite transform coefficients, which is robust against normal image processing operations and geometric attacks. To make our scheme robust to scaling operations, a resampling detection network is trained to detect the scaling factor and then rescale the scaling-attacked image before watermark detection. To make our scheme robust to cutting operations, a template watermark is embedded in the Y channel to locate the cutting position. Experiments for various low- and high-resolution images reveal that our scheme has excellent performance in terms of imperceptibility and robustness.

SELECTION OF CITATIONS
SEARCH DETAIL
...