Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142509, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830466

ABSTRACT

The significant increase in cadmium (Cd) and lead (Pb) pollution in agricultural soil has greatly heightened environmental contamination issues and the risk of human diseases. However, the mechanisms underlying the transformation of Cd and Pb in soil as well as the influencing factors during their accumulation in crop grains remain unclear. Based on the analysis of the distribution trend of Cd and Pb in soil during the growth and development stages of wheat (tillering, filling, and maturity) in alkaline heavy metal-polluted farmland in northern China, this study investigated the response mechanism of soil heavy metal form transformation to soil physicochemical properties, and elucidated the main determining periods and influencing factors for Cd and Pb enrichment in wheat grains. The results showed that an increase in CEC and SOM levels, along with a decrease in pH level, contributed to enhancing the bioavailability of Cd in the soil. This effect was particularly evident during the tillering stage and grain filling stage of wheat. Nevertheless, the effects of soil physicochemical properties on bioavailable Pb was opposite to that on bioavailable Cd. The enrichment of Cd and Pb in grain was significantly influenced by soil pH (r = -0.786, p < 0.01), SOM (r = 0.807, p < 0.01), K (r = -0.730, p < 0.01), AK (r = 0.474, p = 0.019), and AP (r = -0.487, p = 0.016). The reducible form of Cd in soil during the wheat tillering stage was identified as the primary factor contributing to the accumulation of Cd and Pb in wheat grains, with a significant contribution rate of 84.5%. This study provides a greater scientific evidence for the management and risk control of heavy metal pollution in alkaline farmland.


Subject(s)
Cadmium , Lead , Soil Pollutants , Soil , Triticum , Triticum/metabolism , Triticum/chemistry , Cadmium/analysis , Cadmium/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lead/metabolism , Lead/analysis , Soil/chemistry , China , Metals, Heavy/analysis , Metals, Heavy/metabolism , Hydrogen-Ion Concentration , Agriculture , Edible Grain/chemistry , Edible Grain/metabolism , Environmental Monitoring
2.
Accid Anal Prev ; 189: 107123, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37257354

ABSTRACT

Previous researches have demonstrated that traffic crashes in urban areas are geographical events and strongly linked to local characteristics such as road network and land attributes. However, with a significant emphasis on moving-vehicle crashes, the spatial pattern of fixed-object crashes is unclear so far. The difference between these two types of crashes, and whether existing spatial tools such as geographically weighted regression can interpretate the occurrence mode have not been investigated before. To fill this gap, this paper focuses on understanding the spatial features and occurrence of these two types of crash, i.e., moving-vehicle and fixed-object on the city level. Crash data from Dalian, China were aggregated into subdistricts and calibrated with multi-scale geographically weighted regression (MGWR) models. A noticeable but similar clustering pattern was revealed in both types, with spatial overlap of their accident-prone regions. The spatial influence of explanatory variables (road network, geographic, demographic, socio-economic, and land-use variables) was also found mostly similar in both types of crashes. However, fixed-object crash in downtown is more affected by node count, while POI entrance/exit count, especially those in areas with more industrial zones tend to significantly reduce crash risk. In both types of crashes, terrain slope rather than elevation is found to mitigate the crash risk, especially in the downtown area. Compared to traditional Geographically Weighted Regression (GWR) with a fixed bandwidth, the improvement in modeling performance using MGWR highlights the reasonability and benefits to consider the influence scale of each contributing factor in urban spatial analysis of traffic collisions. This study could help transportation authorities identify high-risk regions, understand their contributing factors and take precautions for improving the local traffic safety.


Subject(s)
Accidents, Traffic , Spatial Regression , Humans , Spatial Analysis , Transportation , Cities
3.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806373

ABSTRACT

Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.


Subject(s)
Agropyron , Basidiomycota , Agropyron/genetics , Basidiomycota/genetics , Chromosomes, Plant , Disease Resistance/genetics , Gene Expression Profiling , Plant Breeding , Plant Diseases/genetics , Transcriptome , Triticum/genetics
4.
J Mol Graph Model ; 112: 108133, 2022 05.
Article in English | MEDLINE | ID: mdl-35066458

ABSTRACT

An exploratory study for the acidity of 1,2,3-triazolium ions has been carried out by using the density functional theory (DFT). The prototype of 1,2,3-triazolium ion 2a is calculated to have a pKa of 24.0 ± 0.1. Substitution at N (1) or C (4) on the heterocycle by a tolyl group increases the acidity by about 0.3 pKa unit (pKa (3a) = 23.7 ± 0.1). Electron-withdrawing groups on the aromatic ring increases the acidity by approximately three pKa units (pKa (4b) = 20.9 ± 0.4). The 1,2,3-triazolium ions are less acidic than the corresponding 1,2,4-triazolium and imidazolium ions. The weaker acidity may be explained by the position of the carbene precursor C-H group, which is located between one nitrogen and one carbon atom in the heterocycle. This exploratory study shows that the acidity of the 1,2,3-triazolium ions can be modified by aromatic ring substitutions at N (1) or C (4) positions on the heterocycle, and further by the substituents on the aromatic rings.


Subject(s)
Acids , Density Functional Theory , Ions
5.
Science ; 372(6539): 271-276, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33859030

ABSTRACT

Weyl semimetals are three-dimensional (3D) gapless topological phases with Weyl cones in the bulk band. According to lattice theory, Weyl cones must come in pairs, with the minimum number of cones being two. A semimetal with only two Weyl cones is an ideal Weyl semimetal (IWSM). Here we report the experimental realization of an IWSM band by engineering 3D spin-orbit coupling for ultracold atoms. The topological Weyl points are clearly measured via the virtual slicing imaging technique in equilibrium and are further resolved in the quench dynamics. The realization of an IWSM band opens an avenue to investigate various exotic phenomena that are difficult to access in solids.

6.
Phys Rev Lett ; 123(19): 190603, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765219

ABSTRACT

Quantum dynamics induced in quenching a d-dimensional topological phase across a phase transition may exhibit a nontrivial dynamical topological pattern on the (d-1)D momentum subspace, called band inversion surfaces (BISs), which have a one-to-one correspondence to the bulk topology of the postquench phase. Here we report the experimental observation of such dynamical bulk-surface correspondence through measuring the topological charges in a 2D quantum anomalous Hall model realized in an optical Raman lattice. The system can be quenched with respect to every spin axis by suddenly varying the two-photon detuning or phases of the Raman couplings, in which the topological charges and BISs are measured dynamically by the time-averaged spin textures. We observe that the total charges in the region enclosed by BISs define a dynamical topological invariant, which equals the Chern number of the postquench band and also characterizes the topological pattern of a dynamical field emerging on the BISs, rendering the dynamical bulk-surface correspondence. This study opens a new avenue to explore topological phases dynamically.

7.
Rev Sci Instrum ; 90(5): 054708, 2019 May.
Article in English | MEDLINE | ID: mdl-31153239

ABSTRACT

A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting. As atomic states are usually sensitive to magnetic fields, a magnetic field characterized by ultralow noise as well as high stability is typically required for experimentation. For this study, a bias magnetic field is successfully stabilized at 14.5 G, with the root mean square value of the noise reduced to 18.5 µG (1.28 ppm) by placing µ-metal magnetic shields together with a dynamical feedback circuit. Long-time instability is also regulated consistently below 7 µG. The level of noise exhibited in the bias magnetic field is further confirmed by evaluating the coherence time of a Bose-Einstein condensate characterized by Rabi oscillation. It is concluded that this approach can be applied to other physical systems as well.

8.
Phys Rev Lett ; 121(25): 250403, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608809

ABSTRACT

Topological quantum states are characterized by nonlocal invariants. We present a new dynamical approach for ultracold-atom systems to uncover their band topology, and we provide solid evidence to demonstrate its experimental advantages. After quenching a two-dimensional (2D) Chern band, realized in an ultracold ^{87}Rb gas from a trivial to a topological parameter regime, we observe an emerging ring structure in the spin dynamics during the unitary evolution, which uniquely corresponds to the Chern number for the postquench band. By extracting 2D bulk topology from the 1D ring pattern, our scheme displays simplicity and is insensitive to perturbations. This insensitivity enables a high-precision determination of the full phase diagram for the system's band topology.

9.
Oncotarget ; 8(49): 85085-85101, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156705

ABSTRACT

LSD1 (Lysine Specific Demethylase1)/KDM1A (Lysine Demethylase 1A), a flavin adenine dinucleotide (FAD)-dependent histone H3K4/K9 demethylase, sustains oncogenic potential of leukemia stem cells in primary human leukemia cells. However, the pro-differentiation and anti-proliferation effects of LSD1 inhibition in acute myeloid leukemia (AML) are not yet fully understood. Here, we report that small hairpin RNA (shRNA) mediated LSD1 inhibition causes a remarkable transcriptional activation of myeloid lineage marker genes (CD11b/ITGAM and CD86), reduction of cell proliferation and decrease of clonogenic ability of human AML cells. Cell surface expression of CD11b and CD86 is significantly and dynamically increased in human AML cells upon sustained LSD1 inhibition. Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) analyses of histone marks revealed that there is a specific increase of H3K4me2 modification and an accompanied increase of H3K4me3 modification at the respective CD11b and CD86 promoter region, whereas the global H3K4me2 level remains constant. Consistently, inhibition of LSD1 in vivo significantly blocks tumor growth and induces a prominent increase of CD11b and CD86. Taken together, our results demonstrate the anti-tumor properties of LSD1 inhibition on human AML cell line and mouse xenograft model. Our findings provide mechanistic insights into the LSD1 functions in controlling both differentiation and proliferation in AML.

10.
Nat Med ; 21(11): 1318-25, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26479923

ABSTRACT

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Subject(s)
Antineoplastic Agents/therapeutic use , High-Throughput Screening Assays/methods , Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Pancreatic Ductal/drug therapy , Colorectal Neoplasms/drug therapy , Disease Models, Animal , Female , Humans , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Neoplasm Transplantation , Pancreatic Neoplasms/drug therapy , Reproducibility of Results , Skin Neoplasms/drug therapy , Stomach Neoplasms/drug therapy
11.
J Asthma Allergy ; 6: 81-92, 2013.
Article in English | MEDLINE | ID: mdl-23836995

ABSTRACT

BACKGROUND: The CD14 C-159T single nucleotide polymorphism (SNP) has been investigated widely as a candidate genetic locus in patients with allergic disease. There are conflicting results for the association of the CD14 C-159T SNP with total serum immunoglobulin E (IgE) levels and atopy. There are limited data regarding the association of the CD14 C-159T SNP in subjects of African ancestry. The aim of the study was to determine whether the C-159T SNP and other CD14 SNPs (C1188G, C1341T) were associated with total serum IgE levels and with allergy skin test results in nonatopic and atopic subjects; as well as in Caucasian and African American subjects. METHODS: A total of 291 participants, 18-40 years old, were screened to determine whether they were atopic and/or asthmatic. Analyses were performed to determine the association between CD14 C-159T, C1188G, or C1341T genotypes with serum IgE levels and with the number of positive skin tests among Caucasian or African American subjects. RESULTS: We found no significant association of serum total IgE level with CD14 C-159T, C1188G, or C1341T genotypes within nonatopic or atopic subjects. Subjects with CD14-159 T alleles had significantly more positive allergen skin tests than subjects without CD14-159 T alleles (P = 0.0388). There was a significant association between the CD14 1188 G allele, but not the CD14 1341 T allele, with the number of positive skin-test results in Caucasians, but not in African Americans. CONCLUSION: These results support a possible association between CD14 polymorphisms and atopy. CD14-159 T or CD14 1188 G alleles were associated with atopic disease. For subjects with CD14 1188 G alleles, the association with atopic disease was stronger in Caucasians compared to African Americans.

12.
Bing Du Xue Bao ; 28(5): 567-71, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23233935

ABSTRACT

In order to establish a rapid and accurate method for the detection of Ebola virus (EBOV), the primers used in SYBR Green I real-time RT-PCR were designed based on the EBOV NP gene sequences published in GenBank. The SYBR Green I real-time RT-PCR was established and optimized for the detection of EBOV. The EBOV RNA that was transcribed in vitro was used as a template. The sensitivity of this method was found to reach 1.0 x 10(2) copies/microL and the detection range was 10(2) - 10(10). No cross reaction with RNA samples from Marburg virus, Dengue virus, Xinjiang hemorrhagic fever virus, Japanese encephalitis virus, Influenza virus (H1N1 and H3N2) and Porcine reproductive and respiratory syndrome virus E genomic RNA was found. The method would be useful for the detection and monitoring of EBOV in China.


Subject(s)
Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Benzothiazoles , DNA Primers/chemistry , DNA Primers/genetics , Diamines , Ebolavirus/genetics , Humans , Organic Chemicals/chemistry , Quinolines
SELECTION OF CITATIONS
SEARCH DETAIL
...