Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Article in English | MEDLINE | ID: mdl-38963398

ABSTRACT

Here, we explored a new manufacturing strategy that uses the mask laser interference additive manufacturing (MLIAM) technique, which combines the respective strengths of laser interference lithography and mask lithography to efficiently fabricate across-scales three-dimensional bionic shark skin structures with superhydrophobicity and adhesive reduction. The phenomena and mechanisms of the MLIAM curing process were revealed and analyzed, showing the feasibility and flexibility. In terms of structural performance, the adhesive force on the surface can be tuned based on the growth direction of the bionic shark skin structures, where the maximum rate of the adhesive reduction reaches about 65%. Furthermore, the evolution of the directional diffusion for the water droplet, which is based on the change of the contact angle, was clearly observed, and the mechanism was also discussed by the models. Moreover, no-loss transportations were achieved successfully using the gradient adhesive force and superhydrophobicity on the surface by tuning the growth direction and modifying by fluorinated silane. Finally, this work gives a strategy for fabricating across-scale structures on micro- and nanometers, which have potential application in bioengineering, diversional targeting, and condenser surface.

2.
Anal Methods ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921601

ABSTRACT

Intelligent technology can assist in the diagnosis and treatment of disease, which would pave the way towards precision medicine in the coming decade. As a key focus of medical research, the diagnosis and prognosis of cancer play an important role in the future survival of patients. In this work, a diagnostic method based on nano-resolution imaging was proposed to meet the demand for precise detection methods in medicine and scientific research. The cell images scanned by AFM were recognized by cell feature engineering and machine learning classifiers. A feature ranking method based on the importance of features to responses was used to screen features closely related to categorization and optimization of feature combinations, which helps to understand the feature differences between cell types at the micro level. The results showed that the Bayesian optimized back propagation neural network has accuracy rates of 90.37% and 92.68% on two cell datasets (HL-7702 & SMMC-7721 and GES-1 & SGC-7901), respectively. This provides an automatic analysis method for identifying cancer cells or abnormal cells, which can help to reduce the burden of medical or scientific research, decrease misjudgment and promote precise medical care for the whole society.

3.
J Struct Biol ; 216(3): 108107, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906499

ABSTRACT

Atomic force microscope enables ultra-precision imaging of living cells. However, atomic force microscope imaging is a complex and time-consuming process. The obtained images of living cells usually have low resolution and are easily influenced by noise leading to unsatisfactory imaging quality, obstructing the research and analysis based on cell images. Herein, an adaptive attention image reconstruction network based on residual encoder-decoder was proposed, through the combination of deep learning technology and atomic force microscope imaging supporting high-quality cell image acquisition. Compared with other learning-based methods, the proposed network showed higher peak signal-to-noise ratio, higher structural similarity and better image reconstruction performances. In addition, the cell images reconstructed by each method were used for cell recognition, and the cell images reconstructed by the proposed network had the highest cell recognition rate. The proposed network has brought insights into the atomic force microscope-based imaging of living cells and cell image reconstruction, which is of great significance in biological and medical research.

4.
Water Res ; 257: 121678, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692260

ABSTRACT

The cost-effective treatment of sludge leachate (SL) with high nitrogen content and refractory dissolved organic matter (rDOM) has drawn increasing attention. This study employed, for the first time, a rDOM triggered denitratation-anammox continuous-flow process to treat landfill SL. Moreover, the mechanisms of exploiting rDOM from SL as an inner carbon source for denitratation were systematically analyzed. The results demonstrated outstanding nitrogen and rDOM removal performance without any external carbon source supplement. In this study, effluent concentrations of 4.27 ± 0.45 mgTIN/L and 5.58 ± 1.64 mgTN/L were achieved, coupled with an impressive COD removal rate of 65.17 % ± 1.71 %. The abundance of bacteria belonging to the Anaerolineaceae genus, which were identified as rDOM degradation bacteria, increased from 18.23 % to 35.62 %. As a result, various types of rDOM were utilized to different extents, with proteins being the most notable, except for lignins. Metagenomic analysis revealed a preference for directing electrons towards NO3--N reductase rather than NO2--N reductase, indicating the coupling of denitratation bacteria and anammox bacteria (Candidatus Brocadia). Overall, this study introduced a novel synergy platform for advanced nitrogen removal in treating SL using its inner carbon source. This approach is characterized by low energy consumption and operational costs, coupled with commendable efficiency.


Subject(s)
Nitrogen , Sewage , Sewage/microbiology , Waste Disposal, Fluid/methods , Bacteria/metabolism , Water Pollutants, Chemical , Denitrification
5.
Water Res ; 257: 121708, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38723355

ABSTRACT

The ammonia recovery from wastewater via electrochemical technologies represents a promising way for wastewater treatment, resource recovery, and carbon emissions reduction. However, chemicals consumption and reactors scalability of the existing electrochemical systems have become the key challenges for their development and application. In this study, a stacked transmembrane electro-chemisorption (sTMECS) system was developed to utilize authigenic acid and base on site for enhancing ammonia recovery from wastewater. The easily scaled up system was achieved via innovatively connecting the cathode chamber in a unit with the anode chamber in the adjacent unit by a hydrophobic gas permeable membrane (GPM). Thus, authigenic base at cathodes and authigenic acid at anodes could be utilized as stripper and absorbent on site to enhance the transmembrane chemisorption of ammonia. Continuous power supply, reducing the distances of electrodes to GPM and moderate aeration of the catholyte could promote ammonia recovery. Applied to the ammonia recovery from the simulated urine, the sTMECS under the current density 62.5 A/cm2 with a catholyte aeration rate of 3.2 L/(L⋅min) for operation time 4 h showed the transmembrane ammonia flux of 26.00 g N/(m2·h) and the system energy consumption of 10.5 kWh/kg N. Accordingly, the developed sTMECS system with chemicals saving, easy scale-up and excellent performance shows good prospects in recovering ammonia from wastewater.


Subject(s)
Ammonia , Hydrophobic and Hydrophilic Interactions , Wastewater , Wastewater/chemistry , Membranes, Artificial , Waste Disposal, Fluid/methods , Electrodes , Electrochemical Techniques , Water Purification/methods
6.
Water Res ; 258: 121655, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38762914

ABSTRACT

Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.


Subject(s)
Ammonia , Electrodes , Wastewater , Ammonia/chemistry , Wastewater/chemistry , Membranes, Artificial , Waste Disposal, Fluid/methods , Electrochemical Techniques , Water Pollutants, Chemical/chemistry
7.
Appl Opt ; 63(5): 1394-1401, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437320

ABSTRACT

Broadband antireflection (AR) is highly significant in a wide range of optical applications, and using a gold (Au) micropattern presents a viable method for controlling the behavior of light propagation. This study investigates a novel, to the best of our knowledge, methodology to achieve broadband AR properties in Au micropatterns. It employed the three-dimensional finite-difference time-domain (FDTD) method to simulate and optimize the design of micropatterns. In contrast, the fabrication of Au micropatterns was carried out using two-beam laser interference lithography (LIL). The fabricated Au micropatterns were characterized by a scanning electron microscope (SEM) and spectroscope to validate their antireflection and transmission properties and evaluate their performance at various wavelengths. The optimized Au micropatterns had a high transmittance rating of 96.2%. In addition, the device exhibits a broad-spectrum antireflective property, covering wavelengths ranging from 400 to 1100 nm. The simulation data and experimentally derived results show comparable patterns. These structures can potentially be employed in many optical devices, such as solar cells and photodetectors, whereby achieving optimal device performance reduced reflection and enhanced light absorption.

8.
Adv Sci (Weinh) ; 11(16): e2305025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38376001

ABSTRACT

Motion recognition (MR)-based somatosensory interaction technology, which interprets user movements as input instructions, presents a natural approach for promoting human-computer interaction, a critical element for advancing metaverse applications. Herein, this work introduces a non-intrusive muscle-sensing wearable device, that in conjunction with machine learning, enables motion-control-based somatosensory interaction with metaverse avatars. To facilitate MR, the proposed device simultaneously detects muscle mechanical activities, including dynamic muscle shape changes and vibrational mechanomyogram signals, utilizing a flexible 16-channel pressure sensor array (weighing ≈0.38 g). Leveraging the rich information from multiple channels, a recognition accuracy of ≈96.06% is achieved by classifying ten lower-limb motions executed by ten human subjects. In addition, this work demonstrates the practical application of muscle-sensing-based somatosensory interaction, using the proposed wearable device, for enabling the real-time control of avatars in a virtual space. This study provides an alternative approach to traditional rigid inertial measurement units and electromyography-based methods for achieving accurate human motion capture, which can further broaden the applications of motion-interactive wearable devices for the coming metaverse age.


Subject(s)
Muscle, Skeletal , Wearable Electronic Devices , Humans , Muscle, Skeletal/physiology , Electromyography/methods , Electromyography/instrumentation , Myography/methods , Myography/instrumentation , Adult , Male , Artificial Intelligence , Equipment Design
9.
Analyst ; 149(7): 1988-1997, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38420857

ABSTRACT

Chromosomal instability (CIN) is a source of genetic variation and is highly linked to the malignance of cancer. Determining the degree of CIN is necessary for understanding the role that it plays in tumor development. There is currently a lack of research on high-resolution characterization of CIN and the relationship between CIN and cell mechanics. Here, a method to determine CIN of breast cancer cells by high resolution imaging with atomic force microscopy (AFM) is explored. The numerical and structural changes of chromosomes in human breast cells (MCF-10A), moderately malignant breast cells (MCF-7) and highly malignant breast cells (MDA-MB-231) were observed and analyzed by AFM. Meanwhile, the nuclei, cytoskeleton and cell mechanics of the three kinds of cells were also investigated. The results showed the differences in CIN between the benign and cancer cells. Also, the degree of structural CIN increased with enhanced malignancy of cancer cells. This was also demonstrated by calculating the probability of micronucleus formation in these three kinds of cells. Meanwhile, we found that the area of the nucleus was related to the number of chromosomes in the nucleus. In addition, reduced or even aggregated actin fibers led to decreased elasticities in MCF-7 and MDA-MB-231 cells. It was found that the rearrangement of actin fibers would affect the nucleus, and then lead to wrong mitosis and CIN. Using AFM to detect chromosomal changes in cells with different malignancy degrees provides a new detection method for the study of cell carcinogenesis with a perspective for targeted therapy of cancer.


Subject(s)
Actins , Breast Neoplasms , Humans , Female , Microscopy, Atomic Force/methods , Breast Neoplasms/genetics , Chromosomal Instability , Breast
10.
Microsc Res Tech ; 87(6): 1157-1167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38284615

ABSTRACT

The viscoelasticity of cells serves as a biomarker that reveals changes induced by malignant transformation, which aids the cytological examinations. However, differences in the measurement methods and parameters have prevented the consistent and effective characterization of the viscoelastic phenotype of cells. To address this issue, nanomechanical indentation experiments were conducted using an atomic force microscope (AFM). Multiple indentation methods were applied, and the indentation parameters were gradually varied to measure the viscoelasticity of normal liver cells and cancerous liver cells to create a database. This database was employed to train machine-learning algorithms in order to analyze the differences in the viscoelasticity of different types of cells and as well as to identify the optimal measurement methods and parameters. These findings indicated that the measurement speed significantly influenced viscoelasticity and that the classification difference between the two cell types was most evident at 5 µm/s. In addition, the precision and the area under the receiver operating characteristic curve were comparatively analyzed for various widely employed machine-learning algorithms. Unlike previous studies, this research validated the effectiveness of measurement parameters and methods with the assistance of machine-learning algorithms. Furthermore, the results confirmed that the viscoelasticity obtained from the multiparameter indentation measurement could be effectively used for cell classification. RESEARCH HIGHLIGHTS: This study aimed to analyze the viscoelasticity of liver cancer cells and liver cells. Different nano-indentation methods and parameters were used to measure the viscoelasticity of the two kinds of cells. The neural network algorithm was used to reverse analyze the dataset, and the methods and parameters for accurate classification and identification of cells are successfully found.


Subject(s)
Algorithms , Liver , Microscopy, Atomic Force/methods , Cell Line , Hepatocytes , Viscosity , Elasticity
11.
Technol Health Care ; 32(2): 573-583, 2024.
Article in English | MEDLINE | ID: mdl-37393445

ABSTRACT

BACKGROUND: Cells adherence provides specific information about physiology and pathology, the adhesion measurement between living cells and nanostructures can be measured by atomic force microscopy, but this detection technique is difficult to operate and costly. The adhesion height and effective contact area between cells and substrates are also the key factors affecting measurement value of the overall impedance. These factors change with structural parameters of the substrates, so the adhesion measurement between living cells and substrate can be indirectly reflected by the impedance value. OBJECTIVE: To establish a mapping relationship between the impedance measurement and the adhesion measurement of living cells. The possibility of dynamic measurement of adhesion is realized by this method, and the experimental process is simplified. METHODS: Laser interference technology was used to prepare nanoarray structures with different periods on the surface of silicon wafers for cells culture. Under the same experimental conditions, the impedance of living cells on the substrates of different cycle sizes were measured. The adhesion between cells and different substrates were analyzed by measuring impedance after the interaction between cells and substrate. RESULTS: The adhesion of living cells on the substrates of different sizes be analyzed, and the mapping relationship between the impedance and the adhesion measurement was established. The results showed that, the larger the impedance value between cells and substrate, the larger the effective contact area and the smaller the gap between them. CONCLUSION: The difference of adhesion height and effective adhesion area between living cells and substrates were obtained. This paper, a new method to measure the adhesion properties of living cells is presented, which provides theoretical basis for the related research.


Subject(s)
Electric Impedance , Humans , Cells, Cultured
12.
Micron ; 177: 103573, 2024 02.
Article in English | MEDLINE | ID: mdl-38043195

ABSTRACT

Mitochondria are emerging as potential targets for the cancer treatment. In this study, the effects of curcumin on the activity, migration, and mitochondrial membrane potential (MMP) of malignant hepatocytes (SMMC-7721 cells) were determined using cell viability, migration, and MMP assays. Changes in the morphology and biomechanics of SMMC-7721 cells and their mitochondria were studied using both optical microscopy and atomic force microscopy (AFM). The cell survival rate, migration and MMP depended on the concentration of curcumin. Optical microscopy studies showed that curcumin altered the cell morphology. AFM studies showed that the changes in the morphology and nanomechanics of SMMC-7721 cells and their mitochondria, were induced by curcumin. As the concentration of curcumin increased, the cell length, width, and adhesion decreased, but the height, roughness and Young's modulus increased. In contrast, the mitochondrial length, width, height and roughness increased, but the adhesion and Young's modulus decreased. There was a close relationship between mitochondria and cells in terms of function, morphology and biomechanics. This study shows the effects of curcumin on SMMC-7721 cells and their mitochondria from biology and biophysics perspectives. The findings aid in comprehensively understanding the interactions between mitochondria and malignant hepatocytes.


Subject(s)
Curcumin , Microscopy, Atomic Force , Curcumin/pharmacology , Hepatocytes , Elastic Modulus , Mitochondria
13.
Langmuir ; 40(1): 950-959, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38110298

ABSTRACT

Frost formation and accumulation can have catastrophic effects on a wide range of industrial activities. Hence, a dual-scale surface with a stable Cassie-Baxter state is developed to mitigate the frosting problem by utilizing direct laser interference lithography assisted with hydrothermal treatment. The high Laplace pressure tolerance under the evaporation stimulus and prolonged Cassie-Baxter state maintenance under the condensation stimulus demonstrate the stable Cassie-Baxter state. The dual-scale surface exhibits a lengthy frost-delaying time of up to 5277 s at -7 °C due to the stable Cassie-Baxter state. The self-removal of frost is achieved by promoting the mobility of frost melts driven by the released interfacial energy. In addition, the dense flocculent frost layer is observed on the single-scale micro surface, whereas the sparse pearl-shaped frost layer with many voids is obtained on the dual-scale surface. This work will aid in understanding the frosting process on various-scale superhydrophobic surfaces and in the design of antifrosting surfaces.

14.
Adv Mater ; 36(14): e2306345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38146105

ABSTRACT

Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.

15.
Micron ; 177: 103577, 2024 02.
Article in English | MEDLINE | ID: mdl-38141333

ABSTRACT

In this paper, the effects of resveratrol on the viability, morphology, biomechanics and bioelectricity of SH-SY5Y cells were studied by atomic force microscopy. MTT assay showed that resveratrol had a dose effect on SH-SY5Y cells, and its activity was related to drug concentration and drug action time. With the increase of resveratrol concentration or the extension of action time, the activity of SH-SY5Y cells decreased obviously. Atomic force microscope (AFM) was employed to quantitatively analyze the physical changes of cells. AFM study shows that resveratrol can transform SH-SY5Y cells from spindle to sphere, and increase the cell height and decrease the cell adhesion. Also, the elastic modulus increases under the action of low concentration of resveratrol decreases under the action of high concentration of resveratrol, and the electric signal decreases. This study reveals the impact of resveratrol on SH-SY5Y cells from the biological and biophysical perspectives, which is helpful for a more comprehensive understanding of the interaction mechanism between resveratrol and SH-SY5Y cells. These techniques have potential applications in evaluating the effects of chemical substances on cells and screening targeted drugs.


Subject(s)
Neuroblastoma , Humans , Resveratrol/pharmacology , Microscopy, Atomic Force/methods , Neuroblastoma/metabolism , Cell Line, Tumor , Cell Survival
16.
J Mater Chem B ; 11(46): 11064-11072, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37966856

ABSTRACT

Nanopore sensing is at the forefront of the technological revolution of the protein research field and has been widely used in molecular diagnosis and molecular dynamics, as well as for various sequencing applications. However, direct protein sensing with biological nanopores is still challenging owing to the large molecular size. Here, we propose an aptamer-assisted nanopore strategy for direct protein sensing and demonstrate its proof-of-concept utilities by experiments with SARS-Cov-2 nucleocapsid protein (NP), the most abundantly expressed viral protein, that is widely used in clinical diagnosis for COVID-19. NP binds with an oligonucleotide-tailed aptamer to form a protein-DNA complex which induces a discriminative two-level pattern of current blockades. We reveal the potential molecular interaction mechanism for the characteristic blockades and identify the salt gradient condition as the dominant factor of the phenomenon. Furthermore, we achieve a high sensitivity of 10 pM for NP detection within one hour and make a preliminary exploration on clinical diagnosis. This work promises a new platform for rapid and label-free protein detection.


Subject(s)
Aptamers, Nucleotide , Nanopores , Nanotechnology , Molecular Dynamics Simulation , Sodium Chloride
17.
Mol Pharm ; 20(11): 5579-5592, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37844208

ABSTRACT

Hypoxic tumor cell-derived exosomes play a key role in the occurrence, development, and metastasis of tumors. However, the mechanism of hypoxia-mediated metastasis remains unclear. In this study, hypoxic hepatocellular carcinoma cell (HCC-LM3)-derived exosomes (H-LM3-exos) were used to induce hepatocytes (HL-7702) over a long term (40 passages in 120 days). A nude mouse experiment further verified the effect of H-LM3-exos on tumor growth and metastasis. The process of cancer development in hepatocytes induced by H-LM3-exos was analyzed using both biological and physical techniques, and the results showed that the proliferation and soft agar growth abilities of the transformed cells were enhanced. The concentration of tumor markers secreted by transformed cells was increased, the cytoskeleton was disordered, and the migration ability was enhanced and was accompanied by epithelial-mesenchymal transition (EMT). Transcriptome results showed that differentially expressed genes between transformed cells and hepatocytes were enriched in cancer-related signaling pathways. The degree of cancer development in transformed cells was enhanced by an increase in H-LM3-exos-induced passages. Nude mice treated with different concentrations of H-LM3-exos showed different degrees of tumor growth and liver lesions. The physical properties of the cells were characterized by atomic force microscopy. Compared with the hepatocytes, the height and roughness of the transformed cells were increased, while the adhesion and elastic modulus were decreased. The changes in physical properties of primary tumor cells and hepatocytes in nude mice were consistent with this trend. Our study linking omics with the physical properties of cells provides a new direction for studying the mechanisms of cancer development and metastasis.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Mice, Nude , Exosomes/metabolism , Cell Line, Tumor , Hepatocytes/metabolism , Hypoxia/metabolism
18.
J Microsc ; 292(3): 148-157, 2023 12.
Article in English | MEDLINE | ID: mdl-37855555

ABSTRACT

People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.) extract has the ability to promote skin wound healing, but its healing effect on damaged HaCaT cells needs to be investigated, which plays a key role in judging the effectiveness of skincare ingredients. The objective of this study was to explore the impact of Centella asiatica (L.) extract on ethanol-damaged human immortalised epidermal HaCaT cells based on AFM. We established a model of cellular damage and evaluated cell viability using the MTT assay. The physical changes of cell height, roughness, adhesion and Young's modulus were measured by AFM. The findings indicated that the Centella asiatica (L.) extract had a good repair effect on injured HaCaT cells, and the optimal concentration was 75 µg/mL.


Subject(s)
Centella , HaCaT Cells , Humans , Microscopy, Atomic Force , Skin
19.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37895963

ABSTRACT

Transdermal administration of chemo therapeutics into burn healing may be an effective treatment to reduce toxic side effects and improve patient compliance for burns. As a transdermal delivery system, Camelina lipid droplets (CLDs) have received great attention due to their biocompatibility, high drug payload, and rapid absorption. However, the absorbed-related mechanisms of Camelina lipid droplets have not yet been reported. Thus, this paper not only demonstrated that CLD can accelerate skin burn healing through promoting hFGF2 absorption, but also elucidated the mechanism between the skin tissue and keratinocytes using Franz, HE staining, DSC, FTIR spectroscopy, and atomic force microscopy with the presence of CLD-hFGF2 freeze-dried powder. We found that the cumulative release rate of CLD-hFGF2 freeze-dried powder was significantly higher than that of free hFGF2 freeze-dried powder into the skin. At the same time, CLD can change the structure and content of lipids and keratin to increase the permeability of hFGF2 freeze-dried powder in skin tissue. Unlike the free state of hFGF2, the biophysical properties of single cells, including height and adhesion force, were changed under CLD-hFGF2 freeze-dried powder treatment. Meanwhile, CLD-hFGF2 freeze-dried powder was more easily taken up through keratinocytes without damaging cell integrity, which provided a new viewpoint for understanding the absorption mechanism with the CLD system for cellular physiology characteristics. Overall, our findings demonstrated that CLD could break through the stratum corneum (SC) barrier and elucidated the transport mechanism of lipid droplets in skin tissue, which provides a crucial guideline in drug delivery applications for future engineering.

20.
Langmuir ; 39(37): 13212-13221, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37681704

ABSTRACT

The chromosomal structure derived from UVB-stimulated HaCaT cells was detected by atomic force microscopy (AFM) to evaluate the effect of UVB irradiation. The results showed that the higher the UVB irradiation dose, the more the cells that had chromosome aberration. At the same time, different representative types of chromosome structural aberrations were investigated. We also revealed damage to both DNA and cells under the corresponding irradiation doses. It was found that the degree of DNA damage was directly proportional to the irradiation dose. The mechanical properties of cells were also changed after UVB irradiation, suggesting that cells experienced a series of chain reactions from inside to outside after irradiation. The high-resolution imaging of chromosome structures by AFM after UVB irradiation enables us to relate the damage between chromosomes, DNA, and cells caused by UVB irradiation and provides specific information on genetic effects.


Subject(s)
DNA Damage , Ultraviolet Rays , Microscopy, Atomic Force , Ultraviolet Rays/adverse effects , Chromosomes
SELECTION OF CITATIONS
SEARCH DETAIL
...