Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Ophthalmol ; 2024: 3684626, 2024.
Article in English | MEDLINE | ID: mdl-38957378

ABSTRACT

Objective: To assess repeatability and agreement of central vault for implantable collamer lens (ICL) measured by the Tomey OA-2000 biometry and Spectralis optical coherence tomography (OCT). Methods: In this prospective study, the central vault was measured by the Tomey OA-2000 biometer and Spectralis OCT in 84 eyes (43 patients) after ICL implantation at six month follow-up. Three consecutive scans were obtained by one experienced technician using Tomey OA-2000 and the Spectralis OCT in the same day. The coefficient of variation (CoV), intraclass correlation coefficient (ICC), within-subject standard deviation (Sw), and 2.77 Sw were calculated to assess the repeatability and reproducibility. The paired t-test and Bland-Altman plots were used to analyze the differences and agreements of central vault measured by two devices. Results: Repeatability of the central vault measured by Tomey OA-2000 biometer and Spectralis OCT showed that the CoV was 2.71% and 1.66%, respectively. The ICC for both devices was 0.996 and 0.999, respectively. The paired t-test showed that central vault measured by Tomey OA-2000 biometer was -7.25 ± 23.57 microns lower than that measured by Spectralis OCT (P = 0.006). The mean difference between measurements for Tomey OA-2000 and ASM-OCT with 95% limits of agreement (LoAs) was -38.94 to 53.44 µm. Conclusion: Both Tomey OA-2000 biometer and Spectralis OCT displayed good repeatability for the measurement of central vault of ICL. Good reliability and agreement were observed between Tomey OA-2000 biometer and Spectralis OCT. Both instruments are useful but not replaced each other for central vault measurements.

2.
Heliyon ; 9(4): e14887, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025848

ABSTRACT

Aims: the aim of this study to investigate the elevation changes in posterior corneal surface after 12 months of orthokeratology (ortho-k) treatment. Methods: In this retrospective chart review, medical records of 37 Chinese children who wore ortho-k lenses over 12 months were reviewed. The data of only right eye were analyzed. Variables including the flat and steep keratometry of anterior and posterior corneal principal meridians, central corneal thickness (CCT), posterior thinnest elevation of cornea (PTE), posterior central elevation of cornea (PCE) and posterior mean elevation of cornea (PME) were measured by Pentacam. Variables including anterior chamber depth (ACD), lens thickness (CLT) and ocular axis length (AL) were measured by optical biometry. All variables differences between baseline and 12 months after ortho-k treatment were assessed by statistical analyses. Results: The average age of all subjects was 10.70 ± 1.75 years (range 8-15 years old). The baseline spherical equivalent (SE) was -3.26 ± 1.52 D (-0.50D to -5.00D). Both flat and steep keratometry of anterior corneal surface and CCT were significantly decreased after 12 month follow up during ortho-k treatment (both P < 0.000). Both flat and steep keratometry of posterior corneal surface were not significantly different after 12 month follow up compared with that of baseline (P = 0.426, 0.134 respectively). PCE, PTE and PME were not significantly changed over 12 months of ortho-k treatment (P = 0.051, 0.952 and 0.197 respectively). The ACD was significantly decreased in 12 month follow up during ortho-k treatment (P = 0.001). The CLT and the AL were significantly increased during this period (both P < 0.000). Conclusion: Although the anterior corneal surface was significantly changed by ortho-k lens, the posterior corneal surface did not show any changes during 12 months follow up. Simultaneously, The ACD, CLT and AL were significantly changed during this period.

3.
Cont Lens Anterior Eye ; 45(4): 101534, 2022 08.
Article in English | MEDLINE | ID: mdl-34772627

ABSTRACT

AIMS: Considering individual variability in regards to the effects of orthokeratology (ortho-k) on myopia progression and controversies regarding the precise underlying mechanism, the aim of this study was to investigate several ocular measurements associated with axial length (AL) growth in children wearing ortho-k lenses. METHODS: In this retrospective chart review, medical records of 53 Chinese children who wore ortho-k lenses over the course of 12 months were reviewed. Baseline variables included age at initiation of ortho-k wear, refractive error (spherical equivalent, SE), central corneal thickness (CCT), and flat and steep keratometry of corneal principal meridians. The change of anterior chamber depth (ACD) and the change of crystalline lens thickness (CLT) between baseline and the 12-month follow-up were also analyzed. The contributions of all analyzed variables to AL change were assessed using univariate and multivariate regression analyses. RESULTS: Initially, the results of paired t-test showed that CLT and AL were significantly increased after 12 months of ortho-k wear compared with that at baseline (P = 0.001 and < 0.001). The ACD did not change significantly after 12 months compared with that at baseline (P = 0.491). Subsequently, univariate analyses showed that a reduced rate of AL elongation was found in children who were older age at initiation of ortho-k wear (P = 0.028), had greater SE (higher degree of myopia) at baseline (p = 0.006), had thicker CCT at baseline (P = 0.04), and had greater increase of CLT (P = 0.001) in 12 months. At last, only greater SE (higher degree of myopia) and greater increase of CLT were associated with smaller increases of AL in multivariable analyses, (P = 0.003 and 0.001). CONCLUSIONS: Both CLT and AL were significantly increased in children with overnight ortho-k wear after 12 months of follow-up. Greater baseline SE and greater increase of CLT were associated with less increase in AL during ortho-k wear in children with myopia.


Subject(s)
Lens, Crystalline , Myopia , Orthokeratologic Procedures , Axial Length, Eye , Child , Humans , Myopia/therapy , Orthokeratologic Procedures/methods , Refraction, Ocular , Retrospective Studies
4.
Environ Sci Technol ; 55(3): 1852-1863, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33476134

ABSTRACT

Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores. The airborne spore concentrations were measured during the spring, summer, and fall. The respiratory deposition of five most prevalent spore genera-Ascospores, Aspergillus, Basidiospores, Cladosporium, and Myxomycetes-was predicted using three empirical models: the Multiple Path Particle Dosimetry model, using both the Yeh and age-specific versions, and the Bioaerosol Adaptation of the International Committee on Radiological Protection's Lung deposition model. The predicted total deposited number of spores was highest for Ascospores and Cladosporium. While the majority of spores deposit were in the extrathoracic region, there is a significant deposition for both Aspergillus and Cladosporium in the alveolar region, potentially leading to the development of aspergillosis or allergic asthma. Although the dose-response relationship is unknown, the estimate of the actual spore deposition could be the first step in determining such a relationship.


Subject(s)
Air Microbiology , Cladosporium , Aspergillus , Environmental Monitoring , Humans , Lung , Seasons , Spores, Fungal
5.
Indoor Air ; 31(2): 502-523, 2021 03.
Article in English | MEDLINE | ID: mdl-32931080

ABSTRACT

Bioaerosol concentrations in residential buildings located in the Northeastern US have not been widely studied. Here, in 2011-2015, we studied the presence and seasonal variability of culturable fungi and bacteria in three multi-family apartment buildings and correlated the bioaerosol concentrations with building ventilation system types and environmental parameters. A total of 409 indoor and 86 outdoor samples were taken. Eighty-five percent of investigated apartments had indoor-outdoor (I/O) ratios of culturable fungi below 1, suggesting minimal indoor sources of fungi. In contrast, 56% of the apartments had I/O ratios for culturable bacteria above 1, indicating the prominence of indoor sources of bacteria. Culturable fungi I/O ratios in apartments serviced by central heating, ventilation, and air-conditioning (HVAC) system were lower than those in apartments with window AC. The type of ventilation system did not have a significant effect on the presence of indoor culturable bacteria. A significant positive association was determined between indoor dew point (DP) levels and indoor culturable fungi (P < .001) and bacteria (P < .001), regardless of ventilation type. Also, residents in apartments with central HVAC did not experience extreme DP values. We conclude that building ventilation systems, seasonality, and indoor sources are major factors affecting indoor bioaerosol levels in residential buildings.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Environmental Monitoring , Air Conditioning , Air Filters , Bacteria , Fungi , Heating , Housing , Humans , Particulate Matter , Seasons , Ventilation
6.
Biomed Res Int ; 2019: 2582401, 2019.
Article in English | MEDLINE | ID: mdl-31641668

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is associated with a number of cellular defects such as hyperproliferation, apoptosis, and dedifferentiation. Mutations in polycystin-1 (PC1) account for ∼85% of ADPKD. Here, we showed that wild-type (WT) or mutant PC1 composed of the last five transmembrane (TM) domains and the C-terminus (termed PC1-5TMC) inhibits cell proliferation and protein translation, as well as the downstream effectors of mTOR, consistent with previous reports. Knockdown of B56α, a subunit of the protein phosphatase 2A (PP2A) complex, or application of PP2A inhibitor okadaic acid or calyculin A, abolished the inhibitory effect of PC1 and PC1-5TMC on proliferation, indicating that PP2A/B56α mediates the regulation of cell proliferation by PC1. In addition to the phosphorylated S6 and 4EBP1, B56α was also downregulated by PC1 and PC1-5TMC. Furthermore, the downregulation of B56α, which may be mediated by mTOR but not AKT, can account for the dependence of PC1-inhibited proliferation on PP2A.


Subject(s)
Cell Proliferation/drug effects , Protein Phosphatase 2/metabolism , TRPP Cation Channels/antagonists & inhibitors , Animals , Apoptosis , Cell Differentiation , Cell Line , Down-Regulation , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Marine Toxins , Mutation , Okadaic Acid/metabolism , Oxazoles/metabolism , Phosphorylation , Polycystic Kidney Diseases/drug therapy , Protein Biosynthesis/drug effects , Protein Phosphatase 2/genetics , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics
7.
Biomed Res Int ; 2019: 5320747, 2019.
Article in English | MEDLINE | ID: mdl-31341901

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (~85%) or PKD2 (~15%) gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found that PC1 reduces apoptosis through suppressing the PKR/eIF2α signaling. Whether and how PKR is involved in PC1-inhibited proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation and translation. Because suppressed PKR-eIF2α signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and translation, we examined the effect of dominant negative PKR mutant K296R that has no kinase activity and found that it enhances the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.


Subject(s)
Cell Proliferation , Protein Biosynthesis/genetics , TRPP Cation Channels/metabolism , eIF-2 Kinase/metabolism , Cell Proliferation/genetics , Eukaryotic Initiation Factor-2/metabolism , HEK293 Cells , HeLa Cells , Humans , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics , eIF-2 Kinase/genetics
8.
Sci Rep ; 7(1): 11493, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28904368

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 which encodes polycystin-1 (PC1) and polycystin-2, respectively. PC1 was previously shown to slow cell proliferation and inhibit apoptosis but the underlying mechanisms remain elusive or controversial. Here we showed in cultured mammalian cells and Pkd1 knockout mouse kidney epithelial cells that PC1 and its truncation mutant comprising the last five transmembrane segments and the intracellular C-terminus (PC1-5TMC) down-regulate the phosphorylation of protein kinase R (PKR) and its substrate eukaryotic translation initiation factor 2 alpha (eIF2α). PKR is known to be activated by interferons and dsRNAs, inhibits protein synthesis and induces apoptosis. By co-immunoprecipitation experiments we found that PC1 truncation mutants associate with PKR, or with PKR and its activator PACT. Further experiments showed that PC1 and PC1-5TMC reduce phosphorylation of eIF2α through inhibiting PKR phosphorylation. Our TUNEL experiments using tunicamycin, an apoptosis inducer, and GADD34, an inhibitor of eIF2α phosphorylation, demonstrated that PC1-5TMC inhibits apoptosis of HEK293T cells in a PKR-eIF2α-dependent manner, with concurrent up- and down-regulation of Bcl-2 and Bax, respectively, revealed by Western blotting. Involvement of PC1-regulated eIF2α phosphorylation and a PKR-eIF2α pathway in cell apoptosis may be an important part of the mechanism underlying ADPKD pathogenesis.


Subject(s)
Apoptosis , Eukaryotic Initiation Factor-2/metabolism , Signal Transduction , TRPP Cation Channels/metabolism , eIF-2 Kinase/metabolism , Animals , Apoptosis/genetics , Eukaryotic Initiation Factor-2/antagonists & inhibitors , HEK293 Cells , HeLa Cells , Humans , Kidney/metabolism , Mice , Phosphorylation , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Protein Binding , Protein Interaction Domains and Motifs , eIF-2 Kinase/genetics
9.
J Phys Chem A ; 121(8): 1833-1840, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28139928

ABSTRACT

We computationally study the chiral transition process of the α-Ala molecule under confined different sizes of armchair SWBNNTs to explore the confinement effect. We find that the influence of a confinement environment (in armchair SWBNNTs) on the α-Ala molecule would lead to different reaction pathways. Meanwhile, the preferred reaction pathway is also different in various sizes of armchair SWBNNTs, and their energy barriers for the rate-limiting step decrease rapidly with the decreasing of the diameters of the nanotubes. It is obvious that significant decrease of the chiral transition energy barrier occurs compared with the isolated α-Ala molecule chirality conversion mechanism, by ∼15.6 kcal mol-1, highlighting the improvement in the activity the enantiomers of α-Ala molecule. We concluded that the confinement environment has a significant impact at the nanoscale on the enantiomer transformation process of the chiral molecule.

10.
J Expo Sci Environ Epidemiol ; 27(3): 299-305, 2017 05.
Article in English | MEDLINE | ID: mdl-27168394

ABSTRACT

Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 µg/m3, with a median value of 331 µg/m3. PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 µg/m3 with a median value of 56 µg/m3. Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Inhalation Exposure/analysis , Particulate Matter/analysis , Child, Preschool , Environmental Monitoring/instrumentation , Female , Floors and Floorcoverings , Humans , Male , New Jersey , Particle Size , Robotics/methods
11.
J Air Waste Manag Assoc ; 66(11): 1109-1120, 2016 11.
Article in English | MEDLINE | ID: mdl-27333205

ABSTRACT

This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the Northeastern US and compared performance of those instruments. PM2.5 24-hr average concentrations were determined using a Personal Modular Impactor (PMI) with 2.5 µm cut (SKC Inc., Eighty Four, PA) and a direct reading pDR-1500 (Thermo Scientific, Franklin, MA) as well as its filter. 1-hr average PM2.5 concentrations were measured in the same apartments with an Aerotrak Optical Particle Counter (OPC) (model 8220, TSI, Inc., Shoreview, MN) and a DustTrak DRX mass monitor (model 8534, TSI, Inc., Shoreview, MN). OPC and DRX measurements were compared with concurrent 1-hr mass concentration from the pDR-1500. The pDR-1500 direct reading showed approximately 40% higher particle mass concentration compared to its own filter (n = 41), and 25% higher PM2.5 mass concentration compared to the PMI2.5 filter. The pDR-1500 direct reading and PMI2.5 in non-smoking homes (self-reported) were not significantly different (n = 10, R2 = 0.937), while the difference between measurements for smoking homes was 44% (n = 31, R2 = 0.773). Both OPC and DRX data had substantial and significant systematic and proportional biases compared with pDR-1500 readings. However, these methods were highly correlated: R2 = 0.936 for OPC versus pDR-1500 reading and R2 = 0.863 for DRX versus pDR-1500 reading. The data suggest that accuracy of aerosol mass concentrations from direct-reading instruments in indoor environments depends on the instrument, and that correction factors can be used to reduce biases of these real-time monitors in residential green buildings with similar aerosol properties. IMPLICATIONS: This study used several real-time and filter-based aerosol instruments to measure PM2.5 levels in a high-rise residential green building in the northeastern United States and compared performance of those instruments. The data show that while the use of real-time monitors is convenient for measurement of airborne PM at short time scales, the accuracy of those monitors depends on a particular instrument. Bias correction factors identified in this paper could provide guidance for other studies using direct-reading instruments to measure PM concentrations.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Particulate Matter/analysis , Aerosols/analysis , Housing , Mid-Atlantic Region , Particle Size
12.
Article in English | MEDLINE | ID: mdl-26805862

ABSTRACT

There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Environment Design/statistics & numerical data , Housing , Particulate Matter/analysis , Ventilation/statistics & numerical data , New York
13.
J Aerosol Sci ; 85: 30-41, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25977589

ABSTRACT

Development of asthma in young children may be associated with high exposure to particulate matter (PM). However, typical stationary samplers may not represent the personal exposure of children ages 3 and younger since they may not detect particles resuspended from the floor as children play, thus reducing our ability to correlate exposure and disease etiology. To address this, an autonomous robot, the Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler, was developed to simulate the movements of children as they play on the floor. PIPER and a stationary sampler took simultaneous measurements of particle number concentration in six size channels using an optical particle counter and inhalable PM on filters in 65 homes in New Jersey, USA. To study particle resuspension, for each sampler we calculated the ratio of particle concentration measured while PIPER was moving to the average concentration of particles measured during a reference period when PIPER remained still. For all investigated particle sizes, higher particle resuspension was observed by PIPER compared to the stationary sampler. In 71% of carpeted homes a more significant (at the α = 0.05 level) resuspension of particles larger than 2.5 µm was observed by PIPER compared to the stationary sampler. Typically, particles larger than 2.5 µm were resuspended more efficiently than smaller particles, over both carpeted and bare floors. Additionally, in carpeted homes estimations of PM10 mass from the particle number concentrations measured on PIPER while it was moving were on average a factor of 1.54 higher compared to reference period when PIPER was not moving. For comparison, the stationary sampler measured an increase of PM2.5 mass by a factor of only 1.08 when PIPER was moving compared to a reference period. This demonstrates that PIPER is able to resuspend particles through movement, and provide a better characterization of the resuspended particles than stationary samplers. Accurate measurement of resuspended PM will improve estimates of children's total PM exposure.

14.
PLoS One ; 10(4): e0123018, 2015.
Article in English | MEDLINE | ID: mdl-25861040

ABSTRACT

Polycystin-2 (PC2), encoded by the PKD2 gene, is mutated in ~15% of autosomal dominant polycystic kidney disease. Filamins are actin-binding proteins implicated in scaffolding and membrane stabilization. Here we studied the effects of filamin on PC2 stability using filamin-deficient human melanoma M2, filamin-A (FLNA)-replete A7, HEK293 and IMCD cells together with FLNA siRNA/shRNA knockdown (KD). We found that the presence of FLNA is associated with higher total and plasma membrane PC2 protein expression. Western blotting analysis in combination with FLNA KD showed that FLNA in A7 cells represses PC2 degradation, prolonging the half-life from 2.3 to 4.4 hours. By co-immunoprecipitation and Far Western blotting we found that the FLNA C-terminus (FLNAC) reduces the FLNA-PC2 binding and PC2 expression, presumably through competing with FLNA for binding PC2. We further found that FLNA mediates PC2 binding with actin through forming complex PC2-FLNA-actin. FLNAC acted as a blocking peptide and disrupted the link of PC2 with actin through disrupting the PC2-FLNA-actin complex. Finally, we demonstrated that the physical interaction of PC2-FLNA is Ca-dependent. Taken together, our current study indicates that FLNA anchors PC2 to the actin cytoskeleton through complex PC2-FLNA-actin to reduce degradation and increase stability, and possibly regulate PC2 function in a Ca-dependent manner.


Subject(s)
Filamins/metabolism , TRPP Cation Channels/metabolism , Actin Cytoskeleton/metabolism , Animals , Calcium/metabolism , Cell Line , Cell Membrane/metabolism , Filamins/antagonists & inhibitors , Filamins/genetics , Gene Knockdown Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Interaction Domains and Motifs , Protein Stability , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TRPP Cation Channels/chemistry , TRPP Cation Channels/genetics
15.
PLoS One ; 9(6): e99495, 2014.
Article in English | MEDLINE | ID: mdl-24923671

ABSTRACT

BACKGROUND: Various pathways have been implicated in the pathogenesis of heart failure (HF) with preserved ejection fraction (HFPEF). Inflammation in response to comorbid conditions, such as hypertension and diabetes, may play a proportionally larger role in HFPEF as compared to HF with reduced ejection fraction (HFREF). METHODS AND RESULTS: This study investigated inflammation mediated by the tumor necrosis factor-alpha (TNFα) axis in community-based cohorts of HFPEF patients (n = 100), HFREF patients (n = 100) and healthy controls (n = 50). Enzyme-linked immunosorbent assays were used to investigate levels of TNFα, its two receptors (TNFR1 and TNFR2), and a non-TNFα cytokine, interleukin-6 (IL-6), in plasma derived from peripheral blood samples. Plasma levels of TNFα and TNFR1 were significantly elevated in HFPEF relative to controls, while levels of TNFR2 were significantly higher in HFPEF than both controls and HFREF. TNFα, TNFR1 and TNFR2 were each significantly associated with at least two of the following: age, estimated glomerular filtration rate, hypertension, diabetes, smoking, peripheral vascular disease or history of atrial fibrillation. TNFR2 levels were also significantly associated with increasing grade of diastolic dysfunction and severity of symptoms in HFPEF. CONCLUSIONS: Inflammation mediated through TNFα and its receptors, TNFR1 and TNFR2, may represent an important component of a comorbidity-induced inflammatory response that partially drives the pathophysiology of HFPEF.


Subject(s)
Heart Failure/blood , Heart Failure/physiopathology , Receptors, Tumor Necrosis Factor, Type II/blood , Stroke Volume , Aged , Angiotensin-Converting Enzyme 2 , Biomarkers/blood , Case-Control Studies , Female , Heart Failure/diagnostic imaging , Heart Failure/enzymology , Heart Function Tests , Humans , Inflammation Mediators/blood , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Receptors, Tumor Necrosis Factor, Type I/blood , Ultrasonography
16.
J Expo Sci Environ Epidemiol ; 24(4): 421-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24802555

ABSTRACT

Particulate matter (PM) and its constituents are recognized risk factors for the development of respiratory symptoms and illness in children. Most measurements of exposure have relied upon stationary indoor monitors (SIMs), overlooking the role of resuspended PM. To improve exposure characterization to resuspended aerosol PM, a recently developed methodology has been employed. The goal of this study was to characterize the resuspendable fraction of house dust and early childhood exposures to PM and its constituents in the child's home and compare conventional SIM and the Pre-toddler Inhalable Particulate Environmental Robotic (PIPER), an innovative mobile sampler. The study seeks to demonstrate that PIPER provides a more relevant estimate of exposure from inhalable particulate matter through improved correlation with respiratory symptoms in young children. Seventy-five households with children between 3 and 59 months of age were recruited from clinics in central New Jersey. Demographic information, and responses to a health questionnaire based upon that used by the International Study of Allergies and Asthma in Childhood (ISAAC), and household data were collected. Household exposures to inhalable PM (PM100) and endotoxin were determined with simultaneous SIM and mobile (PIPER) sampling. Univariate and multivariate analyses were carried out. History of wheeze ("recent" (<1 year) and "ever"), cough, asthma and eczema was evaluated. Multivariate analysis models included PM100 and endotoxin levels by tertiles of exposure. Risk of asthma for the highest tertile of PM100, as measured by PIPER (odds ratio=4.2; 95% confidence interval 0.7-24.0), was compared with measurements by SIM (odds ratio=0.7; 95% confidence interval 0.2-2.6). Measurements of PM and its constituents with PIPER are more strongly associated with asthma, eczema and wheeze compared with measurements using SIMs. Application of this methodology may provide useful insights into early childhood exposures related to the etiology of childhood illnesses associated with inhalation exposures.


Subject(s)
Asthma/chemically induced , Eczema/chemically induced , Environmental Exposure , Particulate Matter/analysis , Respiratory System/drug effects , Robotics , Child, Preschool , Environmental Monitoring , Female , Humans , Infant , Male , Particulate Matter/toxicity , Respiratory System/physiopathology
17.
J Mol Med (Berl) ; 92(8): 847-58, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24728465

ABSTRACT

UNLABELLED: Angiotensin-converting enzyme 2 (ACE2) metabolizes Ang II into Ang 1-7 thereby negatively regulating the renin-angiotensin system. However, heart disease in humans and in animal models is associated with only a partial loss of ACE2. ACE2 is an X-linked gene; and as such, we tested the clinical relevance of a partial loss of ACE2 by using female ACE2(+/+) (wildtype) and ACE2(+/-) (heterozygote) mice. Pressure overload in ACE2(+/-) mice resulted in greater LV dilation and worsening systolic and diastolic dysfunction. These changes were associated with increased myocardial fibrosis, hypertrophy, and upregulation of pathological gene expression. In response to Ang II infusion, there was increased NADPH oxidase activity and myocardial fibrosis resulting in the worsening of Ang II-induced diastolic dysfunction with a preserved systolic function. Ang II-mediated cellular effects in cultured adult ACE2(+/-) cardiomyocytes and cardiofibroblasts were exacerbated. Ang II-mediated pathological signaling worsened in ACE2(+/-) hearts characterized by an increase in the phosphorylation of ERK1/2 and JNK1/2 and STAT-3 pathways. The ACE2(+/-) mice showed an exacerbated pressor response with increased vascular fibrosis and stiffness. Vascular superoxide and nitrotyrosine levels were increased in ACE2(+/-) vessels consistent with increased vascular oxidative stress. These changes occurred with increased renal fibrosis and superoxide production. Partial heterozygote loss of ACE2 is sufficient to increase the susceptibility to heart disease secondary to pressure overload and Ang II infusion. KEY MESSAGE: Heart disease in humans with idiopathic dilated cardiomyopathy is associated with a partial loss of ACE2. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to pressure overload-induced heart disease. Heterozygote female ACE2 mutant mice showed enhanced susceptibility to Ang II-induced heart and vascular diseases. Partial loss of ACE2 is sufficient to enhance the susceptibility to heart disease.


Subject(s)
Genetic Predisposition to Disease , Heart Diseases/genetics , Loss of Heterozygosity , Peptidyl-Dipeptidase A/genetics , Adult , Angiotensin II/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/pathology , Echocardiography , Female , Heart/drug effects , Heart Diseases/diagnosis , Heart Diseases/pathology , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Myocardium/metabolism , Myocardium/pathology , Ventricular Remodeling/genetics
18.
Kidney Int ; 85(1): 82-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23760282

ABSTRACT

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs). While TIMP2 and TIMP3 inhibit MMPs, TIMP3 also inhibits activation of pro-MMP2, whereas TIMP2 promotes it. Here we assessed the differential role of TIMP2 and TIMP3 in renal injury using the unilateral ureteral obstruction model. Gene microarray assay showed that post obstruction, the lack of TIMP3 had a greater impact on gene expression of intermediate, late injury- and repair-induced transcripts, kidney selective transcripts, and solute carriers. Renal injury in TIMP3(-/-), but not in TIMP2(-/-), mice increased the expression of collagen type I/III, connective tissue growth factor, transforming growth factor-ß, and the downstream Smad2/3 pathway. Interestingly, ureteral obstruction markedly increased MMP2 activation in the kidneys of TIMP3(-/-) mice, which was completely blocked in the kidneys of TIMP2(-/-) mice. These changes are consistent with enhanced renal tubulointerstitial fibrosis in TIMP3(-/-) and its reduction in TIMP2(-/-) mice. The activities of tumor necrosis factor-α-converting enzyme, caspase-3, and mitogen-activated kinases were elevated in the kidneys of TIMP3(-/-) mice but not TIMP2(-/-) mice, suggesting enhanced activation of apoptotic and pathological signaling pathways only in the obstructed kidney of TIMP3(-/-) mice. Thus, TIMP2 and TIMP3 play differential and contrasting roles in renal injury: TIMP3 protects from damage, whereas TIMP2 promotes injury through MMP2 activation.


Subject(s)
Acute Kidney Injury/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-3/metabolism , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism , Ureteral Obstruction
19.
J Mol Cell Cardiol ; 66: 167-76, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24332999

ABSTRACT

Angiotensin converting enzyme (ACE) 2 is a key negative regulator of the renin-angiotensin system where it metabolizes angiotensin (Ang) II into Ang 1-7. We hypothesize that Ang II suppresses ACE2 by increasing TNF-α converting enzyme (TACE) activity and ACE2 cleavage. Ang II infusion (1.5 mg/kg/day) in wild-type mice for 2 weeks resulted in substantial decrease in myocardial ACE2 protein levels and activity with corresponding increase in plasma ACE2 activity, prevented by AT1R blockade. Ang II resulted in AT1R-mediated increase in myocardial TACE expression and activity, and membrane translocation of TACE. Ang II treatment in Huh7 cells exhibited AT1R-dependent metalloproteinase mediated shedding of ACE2 while transfection with siTACE prevented shedding of ACE2; cardiomyocyte-specific deletion of TACE also prevented shedding of ACE2. Reactive oxygen species played a key role since p47(phox)KO mice were resistant to Ang II-induced TACE phosphorylation and activation with preservation of myocardial ACE2 which dampened Ang II-induced cardiac dysfunction and hypertrophy. In conclusion, Ang II induces ACE2 shedding by promoting TACE activity as a positive feedback mechanism whereby Ang II facilitates the loss of its negative regulator, ACE2. In HF, elevated plasma ACE2 activity likely represents loss of the protective effects of ACE2 in the heart.


Subject(s)
ADAM Proteins/metabolism , Angiotensin II/pharmacology , Feedback, Physiological , Myocardium/metabolism , Peptidyl-Dipeptidase A/metabolism , Receptor, Angiotensin, Type 1/metabolism , ADAM Proteins/antagonists & inhibitors , ADAM Proteins/genetics , ADAM17 Protein , Angiotensin-Converting Enzyme 2 , Animals , Cell Line , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Myocardium/cytology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Peptidyl-Dipeptidase A/genetics , Protein Transport , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/genetics , Renin-Angiotensin System/physiology , Signal Transduction
20.
J Am Heart Assoc ; 2(4): e000249, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23817469

ABSTRACT

BACKGROUND: Coronary artery disease leading to myocardial ischemia is the most common cause of heart failure. Apelin (APLN), the endogenous peptide ligand of the APJ receptor, has emerged as a novel regulator of the cardiovascular system. METHODS AND RESULTS: Here we show a critical role of APLN in myocardial infarction (MI) and ischemia-reperfusion (IR) injury in patients and animal models. Myocardial APLN levels were reduced in patients with ischemic heart failure. Loss of APLN increased MI-related mortality, infarct size, and inflammation with drastic reductions in prosurvival pathways resulting in greater systolic dysfunction and heart failure. APLN deficiency decreased vascular sprouting, impaired sprouting of human endothelial progenitor cells, and compromised in vivo myocardial angiogenesis. Lack of APLN enhanced susceptibility to ischemic injury and compromised functional recovery following ex vivo and in vivo IR injury. We designed and synthesized two novel APLN analogues resistant to angiotensin converting enzyme 2 cleavage and identified one analogue, which mimicked the function of APLN, to be markedly protective against ex vivo and in vivo myocardial IR injury linked to greater activation of survival pathways and promotion of angiogenesis. CONCLUSIONS: APLN is a critical regulator of the myocardial response to infarction and ischemia and pharmacologically targeting this pathway is feasible and represents a new class of potential therapeutic agents.


Subject(s)
Intercellular Signaling Peptides and Proteins/deficiency , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Ventricular Remodeling , Adipokines , Animals , Apelin , Cardiovascular Agents/pharmacology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Failure/prevention & control , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Ischemia/genetics , Myocardial Ischemia/mortality , Myocardial Ischemia/pathology , Myocardial Ischemia/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/mortality , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/pathology , Neovascularization, Physiologic , Peptides/pharmacology , Recovery of Function , Stem Cells/metabolism , Stem Cells/pathology , Time Factors , Ventricular Dysfunction, Left/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...