Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 86(5): 57, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625492

ABSTRACT

Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and "non-cancer-killing" TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are "non-cancer-killing" TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.


Subject(s)
Uterine Cervical Neoplasms , Humans , Animals , Mice , Female , Uterine Cervical Neoplasms/therapy , Mathematical Concepts , Receptors, Antigen, T-Cell , Disease Models, Animal , Cell- and Tissue-Based Therapy , Tumor Microenvironment
2.
J Theor Biol ; 505: 110403, 2020 11 21.
Article in English | MEDLINE | ID: mdl-32693004

ABSTRACT

Adoptive T cell based immunotherapy is gaining significant traction in cancer treatment. Despite its limited efficacy so far in treating solid tumors compared to hematologic cancers, recent advances in T cell engineering render this treatment increasingly more successful in solid tumors, demonstrating its broader therapeutic potential. In this paper we develop a mathematical model to study the efficacy of engineered T cell receptor (TCR) T cell therapy targeting the E7 antigen in cervical cancer cell lines. We consider a dynamical system that follows the population of cancer cells, TCR T cells, and IL-2 treatment concentration. We demonstrate that there exists a TCR T cell dosage window for a successful cancer elimination that can be expressed in terms of the initial tumor size. We obtain the TCR T cell dose for two cervical cancer cell lines: 4050 and CaSki. Finally, a combination therapy of TCR T cell and IL-2 treatment is studied. We show that certain treatment protocols can improve therapy responses in the 4050 cell line, but not in the CaSki cell line.


Subject(s)
Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Immunotherapy , Interleukin-2 , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes , Uterine Cervical Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...