Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 9(3): 689-700, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38646061

ABSTRACT

The complex interactions were performed among non-pharmaceutical interventions, vaccinations, and hosts for all epidemics in mainland China during the spread of COVID-19. Specially, the small-scale epidemic in the city described by SVEIR model was less found in the current studies. The SVEIR model with control was established to analyze the dynamical and epidemiological features of two epidemics in Jinzhou City led by Omicron variants before and after Twenty Measures. In this study, the total population (N) of Jinzhou City was divided into five compartments: the susceptible (S), the vaccinated (V), the exposed (E), the infected (I), and the recovered (R). By surveillance data and the SVEIR model, three methods (maximum likelihood method, exponential growth rate method, next generation matrix method) were governed to estimate basic reproduction number, and the results showed that an increasing tendency of basic reproduction number from Omicron BA.5.2 to Omicron BA.2.12.1. Meanwhile, the effective reproduction number for two epidemics were investigated by surveillance data, and the results showed that Jinzhou wave 1 reached the peak on November 1 and was controlled 7 days later, and that Jinzhou wave 2 reached the peak on November 28 and was controlled 5 days later. Moreover, the impacts of non-pharmaceutical interventions (awareness delay, peak delay, control intensity) were discussed extensively, the variations of infection scales for Omicron variant and EG.5 variant were also discussed. Furthermore, the investigations on peaks and infection scales for two epidemics in dynamic zero-COVID policy were operated by the SVEIR model with control. The investigations on public medical requirements of Jinzhou City and Liaoning Province were analyzed by using SVEIR model without control, which provided a possible perspective on variant evolution in the future.

2.
J Food Prot ; 81(6): 993-1000, 2018 06.
Article in English | MEDLINE | ID: mdl-29757008

ABSTRACT

The aim of this study was to investigate the inactivation of nonpathogenic Escherichia coli in nutrient broth and milk through the use of either ultrasound (US) alone or US combined with nisin (US + nisin) treatments. The E. coli cells were treated at 0 to 55°C, 242.04 to 968.16 W/cm2 for 0 to 15 min. The results showed that the inactivation of E. coli by US and US + nisin increased when the temperature, US power density, and treatment time were increased. The inactivation kinetics of E. coli in nutrient broth by US and US + nisin both conformed to linear models. The largest reductions of 2.89 and 2.93 log cycles by US and US + nisin, respectively, were achieved at 968.16 W/cm2 and at 25°C for 15 min. The suspension media of the E. coli cells influenced the inactivation effect of US, while the growth phases of E. coli cells did not affect their resistance to US. Under all experiment conditions of this study, the differences between US and US + nisin in their respective inactivation effects on E. coli were not obvious. The results suggested that nisin had either no effect at all or a weak synergistic effect with US and that the E. coli cells were inactivated mainly by US, thus indicating that the inactivation of E. coli by US is an "all or nothing" event.


Subject(s)
Escherichia coli , Food Handling/methods , Milk/microbiology , Nisin , Ultrasonics , Animals , Escherichia coli/drug effects , Escherichia coli/growth & development , Nisin/pharmacology , Temperature
3.
Soft Matter ; 12(18): 4274, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27104952

ABSTRACT

Retraction of 'Linear model of a T-junction microdroplet generator for precise control of droplet size' by Wen Zeng, et al., Soft Matter, 2015, DOI: .

4.
Scanning ; 35(2): 69-74, 2013.
Article in English | MEDLINE | ID: mdl-22753345

ABSTRACT

An electron beam inducing method for sprouting large quantities of silver nanoparticles on the surface of silver chloride particles is reported. The electron beam driven process was characterized by time-dependent scanning electron microscope (SEM) and energy dispersive spectrum (EDS), allowing for observing several key intermediates in and characteristics of the growth process. Theoretical calculation coupled with experimental observation demonstrated that the growth of silver nanoparticles was mostly related to the current density of electron beam. Decomposition of the silver chloride on the surface of sample was under electron beam irradiation resulted in silver nanoparticles and chlorine. This phenomenon could be useful in developing a novel mechanism for preparation of nanostructures and proposing a reference to avoid image distortion during the characterization of silver compounds under SEM.

SELECTION OF CITATIONS
SEARCH DETAIL
...