Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.120
Filter
1.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003062

ABSTRACT

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Subject(s)
Environmental Monitoring , Lakes , Lakes/chemistry , China , Environmental Monitoring/methods , Eutrophication , Humic Substances/analysis , Water Quality , Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Ecosystem
2.
J Chem Phys ; 161(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-38973762

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

3.
Small ; : e2402028, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970557

ABSTRACT

2D-3D tin-based perovskites are considered as promising candidates for achieving efficient lead-free perovskite solar cells (PSCs). However, the existence of multiple low-dimensional phases formed during the film preparation hinders the efficient transport of charge carriers. In addition, the non-homogeneous distribution of low-dimensional phases leads to lattice distortion and increases the defect density, which are undesirable for the stability of tin-based PSCs. Here, mixed spacer cations [diethylamine (DEA+) and phenethylamine (PEA+)] are introduced into tin perovskite films to modulate the distribution of the 2D phases. It is found that compared to the film with only PEA+, the combination of DEA+ and PEA+ favors the formation of homogeneous low-dimensional perovskite phases with three octahedral monolayers (n = 3), especially near the bottom interface between perovskite and hole transport layer. The homogenization of 2D phases help improve the film quality with reduced lattice distortion and released strain. With these merits, the tin PSC shows significantly improved stability with 94% of its initial efficiency retained after storing in a nitrogen atmosphere for over 4600 h, and over 80% efficiency maintained after continuous illumination for 400 h.

4.
J Chromatogr A ; 1730: 465126, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968661

ABSTRACT

Microalgae are a group of photosynthetic organisms that can grow autotrophically, performing photosynthesis to synthesize abundant organic compounds and release oxygen. They are rich in nutritional components and chemical precursors, presenting wide-ranging application prospects. However, potential contamination by foreign strains or bacteria can compromise their analytical applications. Therefore, the obtaining of pure algal strains is crucial for the subsequent analysis and application of microalgae. This study designed a deterministic lateral displacement (DLD) chip with dual input and dual outlet of equal width for the separation of Haematococcus pluvialis and Chlorella vulgaris. Optimal separation parameters were determined through a series of experiments, resulting in a purity of 99.80 % for Chlorella vulgaris and 94.58 % for Haematococcus pluvialis, with recovery rates maintained above 90 %, demonstrating high efficiency. This study provides a reliable foundation for future research and applications of microalgae, which holds considerable significance for the subsequent analysis and utilization of microalgae.

5.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982049

ABSTRACT

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Subject(s)
Extracellular Vesicles , Intervertebral Disc Degeneration , Needles , Nucleus Pulposus , Optogenetics , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/metabolism , Extracellular Vesicles/metabolism , Animals , Nucleus Pulposus/metabolism , Optogenetics/methods , Optogenetics/instrumentation , Humans , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cellular Senescence , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Rats , DNA Damage , Mice , Male , Disease Models, Animal , Rats, Sprague-Dawley
6.
Front Public Health ; 12: 1362884, 2024.
Article in English | MEDLINE | ID: mdl-38947356

ABSTRACT

Introduction: Hospital affiliated green spaces can help patients recover and recover their physical functions, promote physical and mental relaxation, enhance health awareness, and improve overall health. However, there are still significant questions about how to scientifically construct hospital affiliated green spaces. This study examines the impact of hospital green spaces on patient rehabilitation through scientific evaluation methods, providing reference for the scientific construction of hospital affiliated green spaces. Applicability evaluation was conducted on the affiliated green spaces of three hospitals in Harbin. An evaluation system covering plants, space, accessibility, rehabilitation functions, and promotional and educational functions has been constructed. The entropy weight method is used to determine the weight of indicators, and the grey correlation analysis method is used to evaluate the suitability of green space for patient rehabilitation. Methods: The experimental results showed that the landscape accessibility index had the highest weight (0.3005) and the plant index had the lowest weight (0.1628), indicating that caring for special needs is the foundation of hospital landscapes, and plants have subtle and long-term effects on physical and mental health. In the evaluation of the rehabilitation applicability of the affiliated green spaces of various hospitals, the second hospital has the highest grey correlation degree (0.8525), followed by the tumor hospital (0.5306) and the fifth hospital (0.4846). It can be seen that the green space of the second hospital has high applicability for patient rehabilitation, but the green space of the tumor hospital and the fifth hospital needs to be improved and developed. Results and discussion: The evaluation criteria used in this study are comprehensive. The landscaping at the Third Hospital is well-planned with good plant configuration and reasonable spatial layout. However, there is insufficient consideration for accessibility in the landscape design, and the details are lacking. The rehabilitation and educational functions of the landscape are inadequate, with limited outdoor activities and low road safety. The hospital's affiliated green spaces should adhere to the principle of "appropriate scale, comprehensive functionality, and educational leisure," integrating rehabilitation and educational functions while increasing the variety of outdoor activities. In the future, emphasis should be placed on exploring the integration of landscape and rehabilitation to provide a functional site that is convenient for visiting, with improved rehabilitation facilities and an educational and enjoyable environment. The design should incorporate elements that contribute to a sense of well-being, including roads and.


Subject(s)
Entropy , Humans , Hospitals , China , Hospital Design and Construction
7.
BMC Public Health ; 24(1): 1759, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956569

ABSTRACT

OBJECTIVE: To investigate the physical fitness level and health behavior status of preschool children in China, explore the relationship between physical fitness and health behavior, and further reveal the main factors affecting health behavior, to provide a reference for improving the physical fitness level of preschool children and maintaining healthy behavior. METHODS: A total of 755 preschool children (394 boys and 361 girls, aged 4.52 ± 1.11 years) were selected from Chongqing and Liupanshui in China by cluster random sampling method for questionnaire survey and physical monitoring, and SPSS21.0 software was used to process and analyze the data. RESULTS: (1) Heart rate (p = 0.015), protein content (p < 0.001), and time spent on the balance beam (p < 0.001) were significantly lower in boys than in girls, while BMI (p = 0.012), muscle mass (p < 0.001), and distance of standing long jump (p < 0.001) were significantly higher in boys than in girls. Meanwhile, systolic blood pressure (p = 0.004) and diastolic blood pressure (p = 0.001) of rural children were significantly higher than those of urban children, while BMI (p < 0.001) and sitting forward flexion (p = 0.019) were significantly lower than those of urban children. (2) The light-intensity physical activity (LPA) and moderate to vigorous physical activity (MVPA) of boys were significantly higher than that of girls (p < 0.001), and the MVPA of urban children was significantly higher than that of rural children (p = 0.001), and the former participated in sports classes more frequently (p < 0.001). (3) There was a significant correlation between physical activity (PA) and physical fitness indicators of preschoolers. Participating in sports interest classes was only significantly correlated with systolic blood pressure (r = 0.08) and sitting forward flexion (r = 0.09). (4) The PA level of preschool children was related to gender, household registration, kindergarten nature, age, residence environment, parental support, and participation degree. Participation in sports interest classes was related to gender, the nature of the kindergarten, household registration, age, and parent participation. Daily screen time was related to household registration, the nature of the kindergarten, the environment of residence, and the value perception of parents. CONCLUSIONS: There were different degrees of correlation between preschool children's physical fitness and health behaviors, and children's health behaviors were closely related to gender, environment, parents, and other factors. Therefore, how to increase the protective factors of children's health behaviors and controlling the risk factors may be crucial to promoting the development of good health behaviors and improving the physical fitness of preschool children.


Subject(s)
Health Behavior , Physical Fitness , Humans , Male , Female , China , Physical Fitness/physiology , Child, Preschool , Surveys and Questionnaires , Rural Population/statistics & numerical data , Exercise/physiology , Urban Population/statistics & numerical data
8.
Nat Commun ; 15(1): 5873, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997291

ABSTRACT

Low response rate, treatment relapse, and resistance remain key challenges for cancer treatment with immune checkpoint blockade (ICB). Here we report that loss of specific tumor suppressors (TS) induces an inflammatory response and promotes an immune suppressive tumor microenvironment. Importantly, low expression of these TSs is associated with a higher expression of immune checkpoint inhibitory mediators. Here we identify, by using in vivo CRISPR/Cas9 based loss-of-function screening, that NF1, TSC1, and TGF-ß RII as TSs regulating immune composition. Loss of each of these three TSs leads to alterations in chromatin accessibility and enhances IL6-JAK3-STAT3/6 inflammatory pathways. This results in an immune suppressive landscape, characterized by increased numbers of LAG3+ CD8 and CD4 T cells. ICB targeting LAG3 and PD-L1 simultaneously inhibits metastatic progression in preclinical triple negative breast cancer (TNBC) mouse models of NF1-, TSC1- or TGF-ß RII- deficient tumors. Our study thus reveals a role of TSs in regulating metastasis via non-cell-autonomous modulation of the immune compartment and provides proof-of-principle for ICB targeting LAG3 for patients with NF1-, TSC1- or TGF-ß RII-inactivated cancers.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Lymphocyte Activation Gene 3 Protein , Triple Negative Breast Neoplasms , Tuberous Sclerosis Complex 1 Protein , Tumor Microenvironment , Tumor Microenvironment/immunology , Animals , Mice , Female , Humans , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , Inflammation/immunology , CD4-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Neoplastic , CRISPR-Cas Systems
9.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998514

ABSTRACT

Poultry is a source of meat that is in great demand in the world. The quality of meat is an imperative point for shoppers. To explore the genes controlling meat quality characteristics, the growth and meat quality traits and muscle transcriptome of two indigenous Yunnan chicken breeds, Wuding chickens (WDs) and Daweishan mini chickens (MCs), were compared with Cobb broilers (CBs). The growth and meat quality characteristics of these two indigenous breeds were found to differ from CB. In particular, the crude fat (CF), inosine monophosphate content, amino acid (AA), and total fatty acid (TFA) content of WDs were significantly higher than those of CBs and MCs. In addition, it was found that MC pectoralis had 420 differentially expressed genes (DEGs) relative to CBs, and WDs had 217 DEGs relative to CBs. Among them, 105 DEGs were shared. The results of 10 selected genes were also confirmed by qPCR. The differentially expressed genes were six enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways including lysosomes, phagosomes, PPAR signaling pathways, cell adhesion molecules, cytokine-cytokine receptor interaction, and phagosome sphingolipid metabolism. Interestingly, four genes (LPL, GK, SCD, and FABP7) in the PPAR signal pathway related to fatty acid (FA) metabolism were elevated in WD muscles, which may account for higher CF, inosine monophosphate content, and AA and FA contents, key factors affecting meat quality. This work laid the foundation for improving the meat quality of Yunnan indigenous chickens, especially WD. In future molecular breeding, the genes in this study can be used as molecular screening markers and applied to the molecular breeding of chicken quality characteristics.

10.
Talanta ; 278: 126427, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38955101

ABSTRACT

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.

11.
Bioact Mater ; 40: 318-333, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38978805

ABSTRACT

Soft tissue integration around titanium (Ti) implants is weaker than that around natural teeth, compromising long-term success of Ti implants. Carbon monoxide (CO) possesses distinctive therapeutic properties, rendering it as a highly promising candidate for enhancing STI. However, achieving controlled CO generation at the STI interface remains challenging. Herein, a controlled CO-releasing dual-function coating was constructed on Ti surfaces. Under near-infrared (NIR) irradiation, the designed surface could actively accelerate CO generation for antibiosis against both aerobic and anaerobic bacteria. More importantly, in the absence of NIR, the slow release of CO induces macrophage polarization from pro-inflammatory phenotype towards pro-regenerative phenotype. In a rat implantation model with induced infection, the designed surface effectively controlled the bacterial infection, alleviates accompanying inflammation and modulated immune microenvironment, leading to enhanced STI. Single-cell sequencing revealed that the coating alters the cytokine profile within the soft tissue, thereby influencing cellular functions. Differentially expressed genes in macrophages are highly enriched in the PIK3-Akt pathway. Furthermore, the cellular communication between fibroblasts and macrophages was significantly enhanced through the CXCL12/CXCL14/CXCR4 and CSF1-CSF1R ligand-receptor pair. These findings indicate that our coating showed an appealing prospect for enhancing STI around Ti implants, which would ultimately contribute to the improved long-term success of Ti implants.

12.
Angew Chem Int Ed Engl ; : e202407658, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982589

ABSTRACT

Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p-d electronic interaction by introducing single-atomp-block metal (M = In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X-ray absorption and photoelectron spectroscopy suggests that doping p-block metals could facilitate electron transfer to Pd sites and thus downshift the d-band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi-Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mgPd-1 and 0.86 A mgPd-1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd-based ORR electrocatalysts ever reported. In the cathode of a Zinc-air battery, Bi-Pd metallene could achieve an open-circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm-2. Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them (dPd-*OO) and Bi doping could appropriately reduce the amount of BCT and stretch the dPd-*OO, thus enhancing the ORR activity.

13.
J Phys Chem A ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984404

ABSTRACT

Metallophilic interactions are the widespread interactions in multimetal clusters to orientate closed-shell metal self-assembly form linear, facet, or block clusters. The closed-shell metal cation does not have empty valence orbitals, but is able to attract each other. It is still a conundrum to understand the resource in balancing the strong Coulomb repulsion between two cations. Most traditional descriptions attribute the counterintuitive attractions to London dispersion, Pauli repulsions, and ambiguous orbital interactions. However, neither the dispersion nor the unsourced donor-acceptor interaction can be applied to explain the saturability and directionality in multimetal clusters, where the M···M' structure is the basic molecular unit. Here, we clarify the origination of the covalency in closed-shell metallophilic interactions based on the study of heterobimetallic compounds composed of d10-d8 species (AgI/AuI-PdII) and d10-d10 species (AgI/AuI-HgII) obtained from experiments. The inner d electrons not only participate in the metallophilic interactions but also show different Lewis acidity and basicity in the formation of M···M' structures. The present work not only provides us a novel covalent perspective to visualize the closed-shell M···M' interactions but also unveils the truth of metallophilic interactions.

14.
Pract Lab Med ; 40: e00413, 2024 May.
Article in English | MEDLINE | ID: mdl-38974938

ABSTRACT

Background: D-dimer at a low level is important evidence for excluding the onset and progression of thrombosis. It is readily detectable and yields rapid results, although significant variability exists among different detection systems. Our study aims to enhance the consistency across various detection systems. Methods: Twelve detection systems were included in our study. We sought to address this inconsistency by using various calibrators (two supplied by manufacturers and two comprising pooled human plasma diluted with different diluents) to standardize D-dimer measurements. We categorized the data into three groups according to D-dimer concentration levels: low (≤0.5 mg/L), medium (>0.5 mg/L - <3 mg/L), and high (≥3 mg/L). We then analyzed the data focusing on range, consistency, comparability, negative coincidence rate, and false negative rate. Results: Calibrating with pooled human plasma led to narrower result ranges in the low and medium groups (P < 0.05). In the low group, consistency improved from weak to strong (ICC 0.4-0.7, P﹤0.05), while it remained excellent in the other groups and overall (ICCï¹¥0.75, P﹤0.05). The percentage of pairwise comparability increased in both the low and high groups. Additionally, there was an increase in the negative coincidence rate. Conclusion: These findings demonstrate that uniform calibration of D-dimer can significantly enhance the consistency of results across different detection systems.

15.
J Environ Manage ; 365: 121633, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955044

ABSTRACT

The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.


Subject(s)
Oxidation-Reduction , Hydrogen Peroxide/chemistry , Iron/chemistry , Reactive Oxygen Species , Biomass
16.
Anal Chem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014979

ABSTRACT

Traditional visual biosensing platforms rely on color to display detection results, which can be influenced by individual visual abilities, equipment, parameters, and lighting conditions during photo capture. This limitation significantly impedes the advancement of next-generation portable electrochemical biosensors. Therefore, we propose a visual biosensing device that utilizes distance as an indicator, enabling the facile determination of the length of discoloration, which is inversely proportional to the concentration of the target analyte. The separation of the Signal Generation (SG) and Signal Output (SO) regions effectively mitigates potential interference from the sample color. Additionally, the SG region can be disassembled to facilitate electrochemical impedance spectroscopy (EIS) detection in laboratory settings, enabling dual-mode detection. Meanwhile, the utilization of piezoelectric nanogenerators (PENG) empowers the entire point-of-care testing (POCT) sensing device, effectively addressing the issue of a limited battery life. The biosensing device exhibited a satisfactory linear range (EIS mode, 5 pg/L to 5 mg/L; visual mode, 0.5 ng/L to 5 mg/L) and a low limit of detection (EIS mode, 2.3 pg/L; visual mode, 0.14 ng/L) with S/N = 3 for ochratoxin A (OTA) under optimized conditions. The self-powered and cost-effective dual-mode biosensing platform developed for OTA detection offers clear and easily interpretable results, demonstrating a high accuracy in laboratory settings.

17.
Sci Rep ; 14(1): 16421, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014041

ABSTRACT

Due to the large computational overhead, underutilization of features, and high bandwidth consumption in traditional SDN environments for DDoS attack detection and mitigation methods, this paper proposes a two-stage detection and mitigation method for DDoS attacks in SDN based on multi-dimensional characteristics. Firstly, an analysis of the traffic statistics from the SDN switch ports is performed, which aids in conducting a coarse-grained detection of DDoS attacks within the network. Subsequently, a Multi-Dimensional Deep Convolutional Classifier (MDDCC) is constructed using wavelet decomposition and convolutional neural networks to extract multi-dimensional characteristics from the traffic data passing through suspicious switches. Based on these extracted multi-dimensional characteristics, a simple classifier can be employed to accurately detect attack samples. Finally, by integrating graph theory with restrictive strategies, the source of attacks in SDN networks can be effectively traced and isolated. The experimental results indicate that the proposed method, which utilizes a minimal amount of statistical information, can quickly and accurately detect attacks within the SDN network. It demonstrates superior accuracy and generalization capabilities compared to traditional detection methods, especially when tested on both simulated and public datasets. Furthermore, by isolating the affected nodes, the method effectively mitigates the impact of the attacks, ensuring the normal transmission of legitimate traffic during network attacks. This approach not only enhances the detection capabilities but also provides a robust mechanism for containing the spread of cyber threats, thereby safeguarding the integrity and performance of the network.

18.
Pathol Res Pract ; 260: 155448, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39004000

ABSTRACT

BACKGROUND AND AIM: Tight junctions maintain gut homeostasis by forming a physical barrier that protects the gut from invasion by microbiota. Cldn-7 is an important component involved in this protection, but the relationship between Cldn-7, intestinal inflammation, and gut microbiota has not been clarified. Here, we hypothesize that Cldn-7 depletion affects intestinal inflammation by altering the gut microbiota. METHODS: Based on the induced intestinal condition of Cldn-7 knockout mice (Cldn7fl/fl;villin-CreaERT2), we established the intestinal flora depletion model and colitis model by antibiotic drinking and feeding with dextran sodium sulfate (DSS). The environment of Cldn-7 gene deletion mice was changed by co-housing experiment. AB-PAS staining and Muc2 were used to detect the effect of co-housing and Cldn-7 deficiency on the mucus layer after flora depletion. qRT-PCR was used to detect the expression of intestinal inflammatory factors and AMPs in mice. Feces were collected and proportions of microbiota were analyzed by 16 S rRNA amplicon sequencing. RESULTS: Mice in the co-housing experiment had altered intestinal microbiota, including diversity, composition, and functional prediction, compared to controls. Intestinal inflammation was restored to some extent following altered intestinal microbiota. The intestinal inflammation caused by Cldn-7 deficiency and susceptibility to DSS could be reduced after antibiotic administration compared to controls, in terms of phenotype, pathological changes, inflammatory factors, mucus barrier, and expression of AMPs. CONCLUSIONS: In analyses of intestinal tissues, colitis induction, and gut microbiota in mice with intestinal disruption of Cldn-7, we found this protein to prevent intestinal inflammation by regulating the gut microbiota. Cldn-7might therefore be an important mediator of host-microbiome interactions. Our research has revealed that Cldn-7 plays an indispensable role in maintaining intestinal homeostasis by regulating the gut microbiota and impacting intestinal inflammation. These findings provide new insights into the pathogenesis of ulcerative colitis.

19.
J Am Chem Soc ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004825

ABSTRACT

High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.

20.
High Alt Med Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847053

ABSTRACT

Background: Controversy remains in the association between smoking and the risk of acute mountain sickness (AMS). Therefore, a systematic review of the existing literature may help clarify this association. Methods: We conducted a systematic search of PubMed, Embase, and Cochrane Library from database inception up to October 19, 2021. Both unadjusted and adjusted relative risks (RRs) and 95% confidence intervals (CIs) were calculated to compare the risk of AMS in the smoking and nonsmoking groups. Meta-regression was conducted to explore the factors causing heterogeneity of the studies, and subsequent stratified analysis was performed to present the pooled RR in different subgroups. Publication bias was assessed using funnel plots. Results: A total of 28 eligible articles (31 studies) were included. The pooled unadjusted and adjusted RRs were 0.88 (95% CI: 0.78-1.01) and 0.87 (95% CI: 0.77-0.99), respectively, using random-effect models. Publication bias was observed owing to restrictions on the sample size. The ascending altitude and sex composition of the study population were likely sources of heterogeneity according to meta-regression. Studies on participants with an ascending altitude of over 3,500 m or composed of both males and females reported a slight but not significant protective effect of smoking on the risk of AMS, with high heterogeneity. Conclusions: Smoking had no significant effect on AMS risk in this meta-analysis. Current studies showed high heterogeneity and included little information on quantitative exposure to smoking (i.e., dose and frequency); thus, the results require careful explanation.

SELECTION OF CITATIONS
SEARCH DETAIL
...