Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.306
Filter
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767492

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954462

ABSTRACT

Perceiving biological motion (BM) is crucial for human survival and social interaction. Many studies have reported impaired BM perception in autism spectrum disorder, which is characterised by deficits in social interaction. Children with attention deficit hyperactivity disorder (ADHD) often exhibit similar difficulties in social interaction. However, few studies have investigated BM perception in children with ADHD. Here, we compared differences in the ability to process local kinematic and global configurational cues, two fundamental abilities of BM perception, between typically developing and ADHD children. We further investigated the relationship between BM perception and social interaction skills measured using the Social Responsiveness Scale and examined the contributions of latent factors (e.g. sex, age, attention, and intelligence) to BM perception. The results revealed that children with ADHD exhibited atypical BM perception. Local and global BM processing showed distinct features. Local BM processing ability was related to social interaction skills, whereas global BM processing ability significantly improved with age. Critically, general BM perception (i.e. both local and global BM processing) may be affected by sustained attentional ability in children with ADHD. This relationship was primarily mediated by reasoning intelligence. These findings elucidate atypical BM perception in ADHD and the latent factors related to BM perception. Moreover, this study provides new evidence that BM perception is a hallmark of social cognition and advances our understanding of the potential roles of local and global processing in BM perception and social cognitive disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Motion Perception , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Child , Male , Female , Motion Perception/physiology , Social Interaction , Adolescent , Attention/physiology
3.
Inorg Chem ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959250

ABSTRACT

Anthrax bacillus is a very dangerous zoonotic pathogen that seriously endangers public health. Rapid and accurate qualitative and quantitative detection of its biomarkers, 2,6-dipicolinic acid (DPA), is crucial for the prevention and treatment of this pathogenic bacterium. In this work, a novel Cd-based MOF (TTCA-Cd) has been synthesized from a polycarboxylate ligand, [1,1':2',1″-terphenyl]-4,4',4″,5'-tetracarboxylic acid (H4TTCA), and further doped with Tb(III), forming a dual-emission lanthanide-functionalized MOF hybrid (TTCA-Cd@Tb). TTCA-Cd@Tb can be developed as a high-performance ratiometric fluorescent sensor toward DPA with a very low detection limit of 7.14 nM and high selectivity in a wide detection range of 0-200 µM, demonstrating a big advancement and providing a new option for the detection of DPA.

4.
Adv Sci (Weinh) ; : e2402086, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946582

ABSTRACT

Diabetic neuropathic pain (DNP), one of the most common complications of diabetes, is characterized by bilateral symmetrical distal limb pain and substantial morbidity. To compare the differences  is aimed at serum metabolite levels between 81 DNP and 73 T2DM patients without neuropathy and found that the levels of branched-chain amino acids (BCAA) are significantly lower in DNP patients than in T2DM patients. In high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM and leptin receptor-deficient diabetic (db/db) mouse models, it is verified that BCAA deficiency aggravated, whereas BCAA supplementation alleviated DNP symptoms. Mechanistically, using a combination of RNA sequencing of mouse dorsal root ganglion (DRG) tissues and label-free quantitative proteomic analysis of cultured cells, it is found that BCAA deficiency activated the expression of L-type amino acid transporter 1 (LAT1) through ATF4, which is reversed by BCAA supplementation. Abnormally upregulated LAT1 reduced Kv1.2 localization to the cell membrane, and inhibited Kv1.2 channels, thereby increasing neuronal excitability and causing neuropathy. Furthermore, intraperitoneal injection of the LAT1 inhibitor, BCH, alleviated DNP symptoms in mice, confirming that BCAA-deficiency-induced LAT1 activation contributes to the onset of DNP. These findings provide fresh insights into the metabolic differences between DNP and T2DM, and the development of approaches for the management of DNP.

5.
Nat Prod Res ; : 1-6, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949790

ABSTRACT

Chemical investigation of the wild mushroom Entoloma clypeatum led to the isolation of one new A-nor B-aromatic C28 steroid (1), along with eight known compounds (2-9) from this mushroom. As far as we know, compound 1 represents an unprecedented type of natural product. The structure of the new compound was elucidated based on extensive spectroscopic data analysis of HR-ESI-MS, 1D, and 2D NMR, while the relative configuration was confirmed by NOESY correlations. In addition, the anti-inflammatory activity of compound 1 was evaluated against LPS induced NO production in RAW 264.7 macrophages. Compound 1 exhibited a moderate anti-inflammatory activity with an IC50 value of 24.56 ± 1.72 µM.

6.
Sci Total Environ ; 946: 174326, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950631

ABSTRACT

A significant reduction in carbon dioxide (CO2) emissions caused by transportation is essential for attaining sustainable urban development. Carbon concentrations from road traffic in urban areas exhibit complex spatial patterns due to the impact of street configurations, mobile sources, and human activities. However, a comprehensive understanding of these patterns, which involve complex interactions, is still lacking due to the human perspective of road interface characteristics has not been taken into account. In this study, a mobile travel platform was constructed to collect both on-road navigation Street View Panoramas (OSVPs) and the corresponding CO2 concentrations. >100 thousand sample pairs that matched "street view-CO2 concentration" were obtained, covering 675.8 km of roads in Shenzhen, China. In addition, four ensemble learning (EL) models were utilized to establish nonlinear connections between the semantic and object features of streetscapes and CO2 concentrations. After performing EL fusion modeling, the predictive R2 in the test set exceeded 90 %, and the mean absolute error (MAE) was <3.2 ppm. The model was applied to Baidu Street View Panoramas (BSVPs) in Shenzhen to generate a map of average on-road CO2 with a 100 m resolution, and the Local Indicator of Spatial Association (LISA) was then used to identify high CO2 intensity spatial clusters. Additionally, the Light Gradient Boost-SHapley Additive exPlanation (LGB-SHAP) analysis revealed that vertically planted trees can reduce CO2 emissions from on-road sources. Moreover, the factors that affect on-road CO2 exhibit interaction and threshold effects. Street View Panoramas (SVPs) and Artificial Intelligence (AI) were adopted here to enhance the spatial measurement of on-road CO2 concentrations and the understanding of driving factors. Our approach facilitates the assessment and design of low-emission transportation in urban areas, which is critical for promoting sustainable traffic development.

7.
Nanomicro Lett ; 16(1): 232, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954118

ABSTRACT

Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.

8.
Sci Rep ; 14(1): 15246, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956068

ABSTRACT

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Subject(s)
14-3-3 Proteins , Ferroptosis , Myocardial Reperfusion Injury , PPAR alpha , Ferroptosis/drug effects , Animals , PPAR alpha/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , 14-3-3 Proteins/metabolism , Mice , Male , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Mice, Inbred C57BL , Rats , Disease Models, Animal
10.
Cell Death Dis ; 15(7): 482, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965225

ABSTRACT

Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis, and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo. Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians improve patient prognosis and develop personalized treatment regimens for AML.


Subject(s)
Fatty Acids , Galectin 1 , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Galectin 1/metabolism , Galectin 1/genetics , Fatty Acids/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Male , Animals , Female , Mice , Risk Factors , Tumor Microenvironment , Cell Line, Tumor , Apoptosis , Cell Proliferation , Prognosis , Middle Aged
11.
Opt Lett ; 49(13): 3592-3595, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950217

ABSTRACT

We propose and demonstrate a dual-band microwave photonic radar scheme based on a monolithic integrated mutual injection laser. Based on the photon-photon resonance (PPR) and the gain switching effect of the integrated laser, the C-/X-band triangular chirp signals with high-quality and comparable power at 4.75-5.25 GHz and 9.5-10.5 GHz are generated. In the current proof-of-concept experiment, the range resolution of the dual-band chirp signals can reach 16.9 cm, compared with the single-band chirp signal that cannot distinguish the targets. Through the application of a single integrated device and a transceiver module sharing a set of antennas, the dual-band microwave photonic radar system scheme improves the system integration.

12.
Talanta ; 278: 126473, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38950503

ABSTRACT

Tumor spheroids are widely studied for in vitro modeling of tumor growth and responses to anticancer drugs. However, current methods are mostly limited to static and perfusion-based cultures, which can be improved by more accurately mimicking pathological conditions. Here, we developed a diffusion-based dynamic culture system for tumor spheroids studies using a thin membrane of hydrogel microwells and a microfluidic device. This allows for effective exchange of nutrients and metabolites between the tumors and the culture medium flowing underneath, resulting in uniform tumor spheroids. To monitor the growth and drug response of the spheroids in real-time, we performed spectroscopic analyses of the system's impedance, demonstrating a close correlation between the tumor size and the resistance and capacitance of the system. Our results also indicate an enhanced drug effect on the tumor spheroids in the presence of a low AC electric field, suggesting a weakening mechanism of the spheroids induced by external perturbation.

13.
Heliyon ; 10(11): e32407, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947441

ABSTRACT

Background: Colchicine is a common therapeutic agent for inflammatory conditions such as gout, yet its narrow therapeutic range frequently results in cases of overdose and subsequent poisoning. Acute colchicine poisoning can be difficult to identify due to its nonspecific clinical manifestations, posing a diagnostic challenge for emergency physicians without a clear history of colchicine ingestion. Case presentation: This report describes a tragic case of acute colchicine poisoning that resulted in three familial homicides. The patients presented with fever, abdominal pain, and diarrhea, which rapidly escalated to shock during their emergency department visits. Laboratory tests revealed a marked leukocytosis, mild elevation in procalcitonin (PCT), significantly elevated creatine kinase (CK) and CK-MB levels, and liver function abnormalities. Despite treatment with carbapenem antibiotics and aggressive fluid resuscitation, the patients' condition deteriorated, marked by a progressive decline in leukocytes and neutrophils. Initially misdiagnosed as septic shock, the ineffectiveness of the standard treatment protocols led to a fatal outcome for all three individuals. Conclusion: Emergency physicians should consider acute colchicine poisoning as a differential diagnosis in patients presenting with shock and the following clinical indicators: (1) pronounced increase in peripheral leukocytes with a disproportionate rise in neutrophils; (2) discordance between the level of serum procalcitonin and the severity of presumed septic shock; (3) early increase in serum creatine kinase (CK) and CK-MB; (4) poor response to antibiotics and resuscitative efforts, accompanied by a continuous decrease in white blood cells and neutrophils. This case underscores the critical need for awareness of colchicine toxicity in the emergency setting, particularly when the clinical presentation mimics septic shock but fails to respond to standard treatments.

14.
ACS Omega ; 9(25): 27407-27414, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947825

ABSTRACT

Hydrogen is emerging as a promising zero-carbon emission energy source for vehicle engines. However, the full potential of hydrogen engines and their economic viability remain uncertain. Additionally, comprehensive data on ultralean combustion performance and emissions as well as strategies for improving HC and CO emissions are lacking. This study addresses these gaps by thoroughly examining hydrogen combustion and emissions in a 1.5 L engine. Incorporating a hydrogen direct injection (HDI) system and an electric supercharger, we investigated emissions under various piston ring tensions during lean limit operations. Our findings reveal that hydrogen exhibits a fast combustion speed in the engine within 20 °CA, along with excellent ultralean burn performance, expanding the lambda limit to 3. As the load increases, the thermal efficiency significantly improves, reaching a maximum of 40.8%. NOx emissions peak at a lambda of 1.1 but decrease notably above 2.7, with levels below 10 ppm. At a lambda near 3, NOx emissions hover between 0 and 5 ppm, approaching zero emissions. Additionally, lubricating oil consumption during engine operation yields a minor HC and CO emissions. Higher tension piston rings result in lower HC and CO emissions, typically below 5 ppm, nearing zero emission levels.

15.
mLife ; 3(2): 167-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948150

ABSTRACT

Atherosclerosis is a chronic inflammatory metabolic disease with a complex pathogenesis. However, the exact details of its pathogenesis are still unclear, which limits effective clinical treatment of atherosclerosis. Recently, multiple studies have demonstrated that the gut microbiota plays a pivotal role in the onset and progression of atherosclerosis. This review discusses possible treatments for atherosclerosis using the gut microbiome as an intervention target and summarizes the role of the gut microbiome and its metabolites in the development of atherosclerosis. New strategies for the treatment of atherosclerosis are needed. This review provides clues for further research on the mechanisms of the relationship between the gut microbiota and atherosclerosis.

16.
Cancer Manag Res ; 16: 711-730, 2024.
Article in English | MEDLINE | ID: mdl-38952353

ABSTRACT

Purpose: Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods: The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results: Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion: Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.

17.
Front Genet ; 15: 1383333, 2024.
Article in English | MEDLINE | ID: mdl-38983268

ABSTRACT

Purpose: Major depressive disorder (MDD) and venous thromboembolism (VTE) may be linked in observational studies. However, the causal association remains ambiguous. Therefore, this study investigates the causal associations between them. Methods: We performed a two-sample univariable and multivariable bidirectional Mendelian randomization (MR) analysis to evaluate the associations between MDD and VTE. The summary genetic associations of MDD statistics were obtained from the Psychiatric Genomics Consortium and UK Biobank. Information on VTE, deep vein thrombosis (DVT), and pulmonary embolism (PE) were obtained from the FinnGen Biobank. Inverse-variance weighting was used as the main analysis method. Other methods include weighted median, MR-Egger, Simple mode, and Weighted mode. Results: Univariable MR analysis revealed no significant associations between MDD and VTE risk (odds ratio (OR): 0.936, 95% confidence interval (CI): 0.736-1.190, p = 0.590); however, after adjusting the potential relevant polymorphisms of body mass index and education, the multivariable MR analysis showed suggestive evidence of association between them (OR: 1.163, 95% CI: 1.004-1.346, p = 0.044). Univariable MR analysis also revealed significant associations between MDD and PE risk (OR: 1.310, 95% CI: 1.073-1.598, p = 0.008), but the association between them was no longer significant in MVMR analysis (p = 0.072). We found no significant causal effects between MDD and DVT risk in univariable or multivariable MR analyses. There was also no clear evidence showing the causal effects between VTE, PE, or DVT and MDD risk. Conclusion: We provide suggestive genetic evidence to support the causal association between MDD and VTE risk. No causal associations were observed between VTE, PE, or DVT and MDD risk. Further validation of these associations and investigations of potential mechanisms are required.

18.
World J Diabetes ; 15(6): 1162-1177, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983804

ABSTRACT

Diabetic foot ulcers (DFUs) pose a critical medical challenge, significantly im-pairing the quality of life of patients. Adipose-derived stem cells (ADSCs) have been identified as a promising therapeutic approach for improving wound healing in DFUs. Despite extensive exploration of the mechanical aspects of ADSC therapy against DFU, its clinical applications remain elusive. In this review, we aimed to bridge this gap by evaluating the use and advancements of ADSCs in the clinical management of DFUs. The review begins with a discussion of the classification and clinical management of diabetic foot conditions. It then discusses the current landscape of clinical trials, focusing on their geographic distribution, reported efficacy, safety profiles, treatment timing, administration techniques, and dosing considerations. Finally, the review discusses the preclinical strategies to enhance ADSC efficacy. This review shows that many trials exhibit biases in study design, unclear inclusion criteria, and intervention protocols. In conclusion, this review underscores the potential of ADSCs in DFU treatment and emphasizes the critical need for further research and refinement of therapeutic approaches, with a focus on improving the quality of future clinical trials to enhance treatment outcomes and advance the field of diabetic wound care.

19.
Gastroenterol Rep (Oxf) ; 12: goae053, 2024.
Article in English | MEDLINE | ID: mdl-38984068

ABSTRACT

Inflammatory bowel disease (IBD), mainly including ulcerative colitis and Crohn's disease, imposes a huge medical and economic burden worldwide. Recently, the diagnosis, treatment, and surveillance of IBD have advanced rapidly, which has changed the epidemiology, cancer risk, and surgery risk of IBD. Here, we reviewed the recent literature on the epidemiology, IBD-related cancer, and IBD-related surgery. We created a choropleth map to show the worldwide incidence trend for Crohn's disease and ulcerative colitis. We also found that the cancer risk and surgery risk of IBD are declining and discussed some risk factors associated with them. Based on the recent trend, we proposed several suggestions and hoped to reduce the global burden of IBD as far as possible.

20.
Environ Pollut ; 358: 124497, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964645

ABSTRACT

Beryllium-containing sludge (BCS) is a byproduct of the physicochemical treatment of beryllium smelting wastewater. The pollutant element beryllium within BCS is highly unstable and extremely toxic, characterized by its small ionic radius and low charge density, resulting in a high risk of leaching and migration. This study is the first to investigate the leaching behavior, influencing mechanisms, and kinetic processes of beryllium in BCS under various environmental conditions. The results indicate that, under national standard conditions, beryllium exhibits a rapid leaching phase within the first 5 h, which then stabilizes after 10 h, with the total leached content significantly exceeding the leaching toxicity identification standards. Under mildly acidic (pH ≤ 5) or highly alkaline (pH = 14) conditions, beryllium demonstrates pronounced leaching and migration behaviors. Notably, in acidic conditions, the leaching rate exceeds 80% within 5 h. Combining the treatment process of beryllium-containing wastewater with analytical methods such as SEM, XPS, ToF-SIMS, and FTIR, it is revealed that due to the heterogeneous nature of BCS, the particle aggregates dissociate over time under acidic conditions. The particle surfaces become increasingly rough, leading to dissolution and the emergence of more reactive sites, resulting in a high proportion of beryllium leaching. Under these conditions, the gradual reaction of Be(OH)2 in BCS to form soluble Be2+ and its hydrolytic complexes is identified as the primary mechanism for extensive beryllium migration. The process encounters minimal diffusion resistance and is classified as reaction-controlled. In acidic conditions with pH = 4, the leaching rate of beryllium significantly increases with rising temperature. The leaching kinetics equation is [(1-x)-0.44]=e(18.26-53050RT)·t, with an apparent activation energy of 53.05 kJ mol-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...