Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 673
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954542

ABSTRACT

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

2.
Commun Biol ; 7(1): 738, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890535

ABSTRACT

Single gamete cell sequencing together with long-read sequencing can reliably produce chromosome-level phased genomes. In this study, we employed PacBio HiFi and Hi-C sequencing on a male Landrace pig, coupled with single-sperm sequencing of its 102 sperm cells. A haplotype assembly method was developed based on long-read sequencing and sperm-phased markers. The chromosome-level phased assembly showed higher phasing accuracy than methods that rely only on HiFi reads. The use of single-sperm sequencing data enabled the construction of a genetic map, successfully mapping the sperm motility trait to a specific region on chromosome 1 (105.40-110.70 Mb). Furthermore, with the assistance of Y chromosome-bearing sperm data, 26.16 Mb Y chromosome sequences were assembled. We report a reliable approach for assembling chromosome-level phased genomes and reveal the potential of sperm population in basic biology research and sperm phenotype research.


Subject(s)
Genome , Haplotypes , Spermatozoa , Animals , Male , Spermatozoa/metabolism , Swine/genetics , Chromosome Mapping/methods , Single-Cell Analysis/methods , Sequence Analysis, DNA/methods , Sperm Motility/genetics
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 567-574, 2024 Jun 15.
Article in Chinese | MEDLINE | ID: mdl-38926372

ABSTRACT

OBJECTIVES: To investigate the structural characteristics of intestinal flora in children with sepsis and its association with inflammatory response. METHODS: A prospective cohort study was conducted. The children with sepsis who were admitted from December 2021 to January 2023 were enrolled as the sepsis group, and the children with non-sepsis who were admitted during the same period were enrolled as the non-sepsis group. The two groups were compared in terms of the distribution characteristics of intestinal flora, peripheral white blood cell count (WBC), C reactive protein (CRP), and cytokines, and the correlation of the relative abundance of fecal flora with WBC, CRP, and cytokines was analyzed. RESULTS: At the genus level, compared with the non-sepsis group, the sepsis group had significantly lower relative abundance of Akkermansia, Ruminococcus, and Alistipes and significantly higher relative abundance of Enterococcus, Streptococcus, and Staphylococcus (P<0.05). At the phylum level, Proteobacteria was the dominant phylum (37.46%) in the group of children with a score of ≤70 from the Pediatric Critical Illness Score (PICS), and Firmicutes was the dominant phylum in the group of children with a score of 71-80 or 81-90 from the PICS (72.20% and 43.88%, respectively). At the genus level, among the 18 specimens, 5 had a relative abundance of >50% for a single flora. Compared with the non-sepsis group, the sepsis group had significant higher levels of WBC, CRP, interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (P<0.05). The Spearman's rank correlation analysis showed that at the genus level, the relative abundance of Ruminococcus, Alistipes, and Parasutterella in the sepsis group was negatively correlated with the levels of WBC, CRP, and IL-6 (P<0.05); the relative abundance of Enterococcus was positively correlated with the CRP level (P<0.01); the relative abundance of Streptococcus and Staphylococcus was positively correlated with the levels of CRP and IL-6 (P<0.05); the relative abundance of Streptococcus was positively correlated with WBC (P<0.05). CONCLUSIONS: Intestinal flora disturbance is observed in children with sepsis, and its characteristics vary with the severity of the disease. The structural changes of intestinal flora are correlated with inflammatory response in children with sepsis.


Subject(s)
C-Reactive Protein , Gastrointestinal Microbiome , Sepsis , Humans , Sepsis/microbiology , Sepsis/blood , Prospective Studies , Male , Female , Child, Preschool , C-Reactive Protein/analysis , Infant , Child , Cytokines/blood , Cytokines/analysis , Cohort Studies , Leukocyte Count , Inflammation
4.
Opt Lett ; 49(11): 3275-3278, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824382

ABSTRACT

It is known that light extraction efficiency (LEE) for AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) can be enhanced by using an inclined sidewall of mesa. However, the reported optimal inclined angles are different. In this work, to explore the origin for enhancing the LEE of DUV LED by using inclined sidewalls, we investigate the effect of an inclined sidewall angle on the LEE for AlGaN-based DUV LEDs with different mesa diameters by using ray tracing. It is found that when compared to large-size DUV LEDs with inclined sidewall, the LEE of small-size DUV LEDs with inclined sidewall is enhanced from both the bottom and side surfaces due to the reduced scattering length and material absorption. Additionally, the optimal inclined sidewall angle is recommended within the range of 25°-65°, and the optimal angle for DUV LEDs decreases as the chip size increases. It can be attributed to the fact that there are two scattering mechanisms for the inclined sidewall. For smaller chip sizes, most of the light is directly scattered into escape cones by the inclined sidewall, resulting in a larger optimal angle. For larger chip sizes, the light firstly experiences total internal reflections by the out-light plane and then is scattered into escape cones by the inclined sidewalls, leading to a smaller optimal angle.

5.
Nat Commun ; 15(1): 4721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830884

ABSTRACT

Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Rabbits , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Sciatic Nerve/physiology , Facial Nerve/physiology , Peripheral Nerves/physiology , Male , Rats , Silicon/chemistry , Rats, Sprague-Dawley , Electric Stimulation
6.
J Am Chem Soc ; 146(25): 17041-17053, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865208

ABSTRACT

A large amount of lithium-ion storage in Si-based anodes promises high energy density yet also results in large volume expansion, causing impaired cyclability and conductivity. Instead of restricting pulverization of Si-based particles, herein, we disclose that single-walled carbon nanotubes (SWNTs) can take advantage of volume expansion and induce interfacial reactions that stabilize the pulverized Si-based clusters in situ. Operando Raman spectroscopy and density functional theory calculations reveal that the volume expansion by the lithiation of Si-based particles generates ∼14% tensile strains in SWNTs, which, in turn, strengthens the chemical interaction between Li and C. This chemomechanical coupling effect facilitates the transformation of sp2-C at the defect of SWNTs to Li-C bonds with sp3 hybridization, which also initiates the formation of new Si-C chemical bonds at the interface. Along with this process, SWNTs can also induce in situ reconstruction of the 3D architecture of the anode, forming mechanically strengthened networks with high electrical and ionic conductivities. As such, with the addition of only 1 wt % of SWNTs, graphite/SiOx composite anodes can deliver practical performance well surpassing that of commercial graphite anodes. These findings enrich our understanding of strain-induced interfacial reactions, providing a general principle for mitigating the degradation of alloying or conversion-reaction-based electrodes.

7.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930326

ABSTRACT

The main goal of this study is the comparison of different reinforcement architectures on the low-velocity impact behavior of green composites. The study includes the comparison of unidirectional, basket weave, and twill weave flax/PLA composites, they are subjected to unidirectional tensile tests, drop-weight impact tests, and after-impact compression tests. Results show that the unidirectional composite demonstrates superior tensile strength and initial modulus due to reduced fiber crimp, while basket weave exhibits the highest energy absorption capability and strain capacity attributed to its higher fiber-weight ratio and fiber crimp. Unidirectional composite also shows a larger impacted damage area compared to basket weave and twill weave, attributed to its internal architecture. Residual compressive strength across all composites decreased by 40% compared to the reference sample. However, the reduction in stiffness after impact was different, UD/PLA composite stiffness was reduced by 30% while the reduction in BW/PLA and T/PLA composites was about 20%.

8.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931575

ABSTRACT

Vehicle detection is a research direction in the field of target detection and is widely used in intelligent transportation, automatic driving, urban planning, and other fields. To balance the high-speed advantage of lightweight networks and the high-precision advantage of multiscale networks, a vehicle detection algorithm based on a lightweight backbone network and a multiscale neck network is proposed. The mobile NetV3 lightweight network based on deep separable convolution is used as the backbone network to improve the speed of vehicle detection. The icbam attention mechanism module is used to strengthen the processing of the vehicle feature information detected by the backbone network to enrich the input information of the neck network. The bifpn and icbam attention mechanism modules are integrated into the neck network to improve the detection accuracy of vehicles of different sizes and categories. A vehicle detection experiment on the Ua-Detrac dataset verifies that the proposed algorithm can effectively balance vehicle detection accuracy and speed. The detection accuracy is 71.19%, the number of parameters is 3.8 MB, and the detection speed is 120.02 fps, which meets the actual requirements of the parameter quantity, detection speed, and accuracy of the vehicle detection algorithm embedded in the mobile device.

9.
Angew Chem Int Ed Engl ; : e202405781, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782734

ABSTRACT

Synthesis of bicyclic scaffolds has gained significant attention in drug discovery due to their potential to mimic benzene bioisosteres. Here, we present a mild and scalable Sc(OTf)3-catalyzed [3+2] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with ynamides, yielding a diverse array of polysubstituted 2-amino-bicyclo[2.1.1]hexenes in good to excellent yields. These products offer valuable starting materials for the construction of novel functionalized bicyclo[1.1.0]butanes. Preliminary mechanistic studies indicate that the reaction involves a nucleophilic addition of ynamides to bicyclo[1.1.0]butanes, followed by an intramolecular cyclization of in situ generated enolate and keteniminium ion. We expect that these findings will encourage utilization of complex bioisosteres and foster further investigation into BCB-based cycloaddition chemistry.

10.
Front Med (Lausanne) ; 11: 1386161, 2024.
Article in English | MEDLINE | ID: mdl-38784232

ABSTRACT

Background: Fungal infections are associated with high morbidity and mortality in the intensive care unit (ICU), but their diagnosis is difficult. In this study, machine learning was applied to design and define the predictive model of ICU-acquired fungi (ICU-AF) in the early stage of fungal infections using Random Forest. Objectives: This study aimed to provide evidence for the early warning and management of fungal infections. Methods: We analyzed the data of patients with culture-positive fungi during their admission to seven ICUs of the First Affiliated Hospital of Chongqing Medical University from January 1, 2015, to December 31, 2019. Patients whose first culture was positive for fungi longer than 48 h after ICU admission were included in the ICU-AF cohort. A predictive model of ICU-AF was obtained using the Least Absolute Shrinkage and Selection Operator and machine learning, and the relationship between the features within the model and the disease severity and mortality of patients was analyzed. Finally, the relationships between the ICU-AF model, antifungal therapy and empirical antifungal therapy were analyzed. Results: A total of 1,434 cases were included finally. We used lasso dimensionality reduction for all features and selected six features with importance ≥0.05 in the optimal model, namely, times of arterial catheter, enteral nutrition, corticosteroids, broadspectrum antibiotics, urinary catheter, and invasive mechanical ventilation. The area under the curve of the model for predicting ICU-AF was 0.981 in the test set, with a sensitivity of 0.960 and specificity of 0.990. The times of arterial catheter (p = 0.011, OR = 1.057, 95% CI = 1.053-1.104) and invasive mechanical ventilation (p = 0.007, OR = 1.056, 95%CI = 1.015-1.098) were independent risk factors for antifungal therapy in ICU-AF. The times of arterial catheter (p = 0.004, OR = 1.098, 95%CI = 0.855-0.970) were an independent risk factor for empirical antifungal therapy. Conclusion: The most important risk factors for ICU-AF are the six time-related features of clinical parameters (arterial catheter, enteral nutrition, corticosteroids, broadspectrum antibiotics, urinary catheter, and invasive mechanical ventilation), which provide early warning for the occurrence of fungal infection. Furthermore, this model can help ICU physicians to assess whether empiric antifungal therapy should be administered to ICU patients who are susceptible to fungal infections.

11.
Adv Mater ; : e2404120, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727702

ABSTRACT

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.

12.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794029

ABSTRACT

Most multi-target movements are nonlinear in the process of movement. The common multi-target tracking filtering methods directly act on the multi-target tracking system of nonlinear targets, and the fusion effect is worse under the influence of different perspectives. Aiming to determine the influence of different perspectives on the fusion accuracy of multi-sensor tracking in the process of target tracking, this paper studies the multi-target tracking fusion strategy of a nonlinear system with different perspectives. A GM-JMNS-CPHD fusion technique is introduced for random outlier selection in multi-target tracking, leveraging sensors with limited views. By employing boundary segmentation from distinct perspectives, the posterior intensity function undergoes decomposition into multiple sub-intensities through SOS clustering. The distribution of target numbers within the respective regions is then characterized by the multi-Bernoulli reconstruction cardinal distribution. Simulation outcomes demonstrate the robustness and efficacy of this approach. In comparison to other algorithms, this method exhibits enhanced robustness even amidst a decreased detection probability and heightened clutter rates.

13.
Fitoterapia ; 177: 106040, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801892

ABSTRACT

Four new lignans named cephaliverins A-D (1-4), along with seven known analogues (5-11), were isolated from Cephalotaxus oliveri Mast. Their structures were elucidated on the basis of HR-ESI-MS and NMR analyses, and their absolute configurations were determined by ECD comparison. Cephaliverin A (1), herpetotriol (5) and hedyotol A (6) exhibited moderate antitumor activity against HepG2 and A549 cell lines.

14.
Mol Med ; 30(1): 73, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822233

ABSTRACT

Human malignant pleural mesothelioma (hMPM) is an aggressive, rare disease with a poor prognosis. Histologically, MPM is categorized into epithelioid, biphasic, and sarcomatoid subtypes, with the epithelioid subtype generally displaying a better response to treatment. Conversely, effective therapies for the non-epithelioid subtypes are limited. This study aimed to investigate the potential role of FK228, a histone deacetylase inhibitor, in the suppression of hMPM tumor growth. We conducted a comprehensive analysis of the histological and molecular characteristics of two MPM cell lines, CRL-5820 (epithelioid) and CRL-5946 (non-epithelioid). CRL-5946 cells and non-epithelioid patient-derived xenografted mice exhibited heightened growth rates compared to those with epithelioid MPM. Both CRL-5946 cells and non-epithelioid mice displayed a poor response to cisplatin. However, FK228 markedly inhibited the growth of both epithelioid and non-epithelioid tumor cells in vitro and in vivo. Cell cycle analysis revealed FK228-induced G1/S and mitotic arrest in MPM cells. Caspase inhibitor experiments demonstrated that FK228-triggered apoptosis occurred via a caspase-dependent pathway in CRL-5946 but not in CRL-5820 cells. Additionally, a cytokine array analysis showed that FK228 reduced the release of growth factors, including platelet-derived and vascular endothelial growth factors, specifically in CRL-5946 cells. These results indicate that FK228 exhibits therapeutic potential in MPM by inducing cytotoxicity and modulating the tumor microenvironment, potentially benefiting both epithelioid and non-epithelioid subtypes.


Subject(s)
Apoptosis , Cell Proliferation , Depsipeptides , Mesothelioma, Malignant , Mesothelioma , Xenograft Model Antitumor Assays , Humans , Animals , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/pathology , Cell Line, Tumor , Mice , Mesothelioma/drug therapy , Mesothelioma/pathology , Apoptosis/drug effects , Cell Proliferation/drug effects , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Pleural Neoplasms/drug therapy , Pleural Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Epithelioid Cells/pathology , Cell Cycle/drug effects
15.
Plant Physiol Biochem ; 211: 108662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691876

ABSTRACT

WOX11/12 is a homeobox gene of WOX11 and WOX12 in Arabidopsis that plays important roles in crown root development and growth. It has been reported that WOX11/12 participates in adventitious root (AR) formation and different abiotic stress responses, but the downstream regulatory network of WOX11/12 in poplar remains to be further investigated. In this study, we found that PagWOX11/12a is strongly induced by PEG-simulated drought stress. PagWOX11/12a-overexpressing poplar plantlets showed lower oxidative damage levels, greater antioxidant enzyme activities and reactive oxygen species (ROS) scavenging capacity than non-transgenic poplar plants, whereas PagWOX11/12a dominant repression weakened root biomass accumulation and drought tolerance in poplar. RNA-seq analysis revealed that several differentially expressed genes (DEGs) regulated by PagWOX11/12a are involved in redox metabolism and drought stress response. We used RT-qPCR and yeast one-hybrid (Y1H) assays to validate the downstream target genes of PagWOX11/12a. These results provide new insights into the biological function and molecular regulatory mechanism of WOX11/12 in the abiotic resistance processes of poplar.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Populus , Reactive Oxygen Species , Populus/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Plant Roots/metabolism , Plant Roots/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Drought Resistance
16.
ACS Appl Mater Interfaces ; 16(22): 29087-29097, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38788159

ABSTRACT

Electrospun microfibers, designed to emulate the extracellular matrix (ECM), play a crucial role in regulating the cellular microenvironment for tissue repair. Understanding their mechanical influence and inherent biological interactions at the ECM interface, however, remains a complex challenge. This study delves into the role of mechanical cues in tissue repair by fabricating Col/PLCL microfibers with varying chemical compositions and alignments that mimic the structure of the ECM. Furthermore, we optimized these microfibers to create the Col/PLCL@PDO aligned suture, with a specific emphasis on mechanical tension in tissue repair. The result reveals that within fibers of identical chemical composition, fibroblast proliferation is more pronounced in aligned fibers than in unaligned ones. Moreover, cells on aligned fibers exhibit an increased aspect ratio. In vivo experiments demonstrated that as the tension increased to a certain level, cell proliferation augmented, cells assumed more elongated morphologies with distinct protrusions, and there was an elevated secretion of collagen III and tension suture, facilitating soft tissue repair. This research illuminates the structural and mechanical dynamics of electrospun fiber scaffolds; it will provide crucial insights for the advancement of precise and controllable tissue engineering materials.


Subject(s)
Biomimetic Materials , Cell Proliferation , Sutures , Tissue Engineering , Tissue Scaffolds , Animals , Cell Proliferation/drug effects , Biomimetic Materials/chemistry , Tissue Scaffolds/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Mice , Fibroblasts/metabolism , Fibroblasts/cytology , Polyesters/chemistry , Stress, Mechanical
17.
Nano Lett ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602471

ABSTRACT

Mimicking the function of human skin is highly desired for electronic skins (e-skins) to perceive the tactile stimuli by both their intensity and spatial location. The common strategy using pixelated pressure sensor arrays and display panels greatly increases the device complexity and compromises the portability of e-skins. Herein, we tackled this challenge by developing a user-interactive iontronic skin that simultaneously achieves electrical pressure sensing and on-site, nonpixelated pressure mapping visualization. By merging the electrochromic and iontronic pressure sensing units into an integrated multilayer device, the interlayer charge transfer is regulated by applied pressure, which induces both color shifting and a capacitance change. The iontronic skin could visualize the trajectory of dynamic forces and reveal both the intensity and spatial information on various human activities. The integration of dual-mode pressure responsivity, together with the scalable fabrication and explicit signal output, makes the iontronic skin highly promising in biosignal monitoring and human-machine interaction.

18.
Nat Commun ; 15(1): 3048, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589497

ABSTRACT

Flexible pressure sensors can convert mechanical stimuli to electrical signals to interact with the surroundings, mimicking the functionality of the human skins. Piezocapacitive pressure sensors, a class of most widely used devices for artificial skins, however, often suffer from slow response-relaxation speed (tens of milliseconds) and thus fail to detect dynamic stimuli or high-frequency vibrations. Here, we show that the contact-separation behavior of the electrode-dielectric interface is an energy dissipation process that substantially determines the response-relaxation time of the sensors. We thus reduce the response and relaxation time to ~0.04 ms using a bonded microstructured interface that effectively diminishes interfacial friction and energy dissipation. The high response-relaxation speed allows the sensor to detect vibrations over 10 kHz, which enables not only dynamic force detection, but also acoustic applications. This sensor also shows negligible hysteresis to precisely track dynamic stimuli. Our work opens a path that can substantially promote the response-relaxation speed of piezocapacitive pressure sensors into submillisecond range and extend their applications in acoustic range.

19.
ACS Sens ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651662

ABSTRACT

Excavating nucleic acid quantitative capabilities by combining clustered regularly interspaced short palindromic repeats (CRISPR) and isothermal amplification in one pot is of common interest. However, the mutual interference between CRISPR cleavage and isothermal amplification is the primary obstacle to quantitative detection. Though several works have demonstrated enhanced detection sensitivity by reducing the inhibition of CRISPR on amplification in one pot, few paid attention to the amplification process and even dynamic reaction processes between the two. Herein, we find that DNA quantification can be realized by regulating either recombinase polymerase amplification (RPA) efficiency or CRISPR/Cas12a cleaving efficiency (namely, tuning the dynamic reaction balance) in one pot. The sensitive quantification is realized by utilizing dual PAM-free crRNAs for CRISPR/Cas12a recognition. The varied RPA primer concentration with stabilized CRISPR systems significantly affects the amplification efficiency and quantitative performances. Alternatively, quantitative detection can also be achieved by stabilizing the amplification process while regulating the CRISPR/Cas12a concentration. The quantitative capability is proved by detecting DNA targets from Lactobacillus acetotolerans and SARS-CoV-2. The quantitative performance toward real samples is comparable to quantitative real-time PCR for detecting L. acetotolerans spiked in fermented food samples and SARS-CoV-2 clinical samples. We expect that the presented method will be a powerful tool for quantifying other nucleic acid targets.

20.
Proc Natl Acad Sci U S A ; 121(15): e2321759121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38579009

ABSTRACT

Adjacent plant cells are connected by specialized cell wall regions, called middle lamellae, which influence critical agricultural characteristics, including fruit ripening and organ abscission. Middle lamellae are enriched in pectin polysaccharides, specifically homogalacturonan (HG). Here, we identify a plant-specific Arabidopsis DUF1068 protein, called NKS1/ELMO4, that is required for middle lamellae integrity and cell adhesion. NKS1 localizes to the Golgi apparatus and loss of NKS1 results in changes to Golgi structure and function. The nks1 mutants also display HG deficient phenotypes, including reduced seedling growth, changes to cell wall composition, and tissue integrity defects. These phenotypes are comparable to qua1 and qua2 mutants, which are defective in HG biosynthesis. Notably, genetic interactions indicate that NKS1 and the QUAs work in a common pathway. Protein interaction analyses and modeling corroborate that they work together in a stable protein complex with other pectin-related proteins. We propose that NKS1 is an integral part of a large pectin synthesis protein complex and that proper function of this complex is important to support Golgi structure and function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Adhesion/genetics , Pectins/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cell Wall/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...