Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.664
Filter
1.
Comput Biol Chem ; 112: 108150, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018587

ABSTRACT

OBJECTIVES: Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer. Understanding the molecular mechanisms underlying tumor progression is of great clinical significance. This study aims to identify novel molecular markers associated with LUAD subtypes, with the goal of improving the precision of LUAD subtype classification. Additionally, optimization efforts are directed towards enhancing insights from the perspective of patient survival analysis. MATERIALS AND METHODS: We propose an innovative feature-selection approach that focuses on LUAD classification, which is comprehensive and robust. The proposed method integrates multi-omics data from The Cancer Genome Atlas (TCGA) and leverages a synergistic combination of max-relevance and min-redundancy, least absolute shrinkage and selection operator, and Boruta algorithms. These selected features were deployed in six machine-learning classifiers: logistic regression, random forest, support vector machine, naive Bayes, k-Nearest Neighbor, and XGBoost. RESULTS: The proposed approach achieved an area under the receiver operating characteristic curve (AUC) of 0.9958 for LR. Notably, the accuracy and AUC of a composite model incorporating copy number, methylation, as well as RNA- sequencing data for expression of exons, genes, and miRNA mature strands surpassed the accuracy and AUC metrics of models with single-omics data or other multi-omics combinations. Survival analyses, revealed the SVM classifier to elicit optimal classification, outperforming that achieved by TCGA. To enhance model interpretability, SHapley Additive exPlanations (SHAP) values were utilized to elucidate the impact of each feature on the predictions. Gene Ontology (GO) enrichment analysis identified significant biological processes, molecular functions, and cellular components associated with LUAD subtypes. CONCLUSION: In summary, our feature selection process, based on TCGA multi-omics data and combined with multiple machine learning classifiers, proficiently identifies molecular subtypes of lung adenocarcinoma and their corresponding significant genes. Our method could enhance the early detection and diagnosis of LUAD, expedite the development of targeted therapies and, ultimately, lengthen patient survival.

2.
Anim Genet ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019844

ABSTRACT

Litter size is a key indicator of production performance in livestock. However, its genetic basis in goats remains poorly understood. In this work, a genome-wide selection sweep analysis (GWSA) on 100 published goat genomes with different litter rates was performed for the first time to identify candidate genes related to kidding rate. This analysis was combined with the public RNA-sequencing data of ovary tissues (follicular phase) from high- and low-yielding goats. A total of 2278 genes were identified by GWSA. Most of these genes were enriched in signaling pathways related to ovarian follicle development and hormone secretion. Moreover, 208 differentially expressed genes between groups were obtained from the ovaries of goats with different litter sizes. These genes were substantially enriched in the cholesterol and steroid synthesis signaling pathways. Meanwhile, the weighted gene co-expression network was used to perform modular analysis of differentially expressed genes. The results showed that seven modules were reconstructed, of which one module showed a very strong correlation with litter size (r = -0.51 and p-value <0.001). There were 51 genes in this module, and 39 hub genes were screened by Pearson's correlation coefficient between core genes > 0.4, correlation coefficient between module members > 0.80 and intra-module connectivity ≥5. Finally, based on the results of GWSA and hub gene Venn analysis, seven key genes (ACSS2, HECW2, KDR, LHCGR, NAMPT, PTGFR and TFPI) were found to be associated with steroid synthesis and follicle growth development. This work contributes to understanding of the genetic basis of goat litter size and provides theoretical support for goat molecular breeding.

3.
J Ethnopharmacol ; 334: 118565, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39002821

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps cicadae (C.cicadae), named "Chan Hua", an anamorph of Isaria cicadae Miquel, is an entomogenous complex formed by fungi parasitizing on the larvae of cicadas and belongs to the Claviciptaceae family and the genus Codyceps, which traditionally holds a significant place in Chinese ethnopharmacology, specifically for eye clarity and as a remedy for age-related ocular conditions. The underlying mechanisms contributing to its eyesight enhancement and potential effectiveness against Age-related macular degeneration (AMD) remain unexplored. AIM OF THE STUDY: This study aims to elucidate the protective role of C.cicadae and its active ingredient, Myriocin (Myr), against AMD. MATERIALS AND METHODS: A chemical inducer was employed to make retinal pigment epithelium (RPE) damage in vitro and in vivo. The key ingredients of C.cicadae and their related mechanisms for anti-AMD were studied through bioinformatic analysis and molecular biological approaches. RESULTS: Myr was identified through high-performance liquid chromatography (HPLC) as an active ingredient in C.cicadae, and demonstrated a protective effect on RPE cells, reducing the structural damage and cell death induced by sodium iodate (SI). Further, Myr reduced eyelid secretions in AMD mice and restored their retinal structure and function. The differentially expressed genes (DEGs) in Myr treatment are primarily associated with TNF and Necroptosis signaling pathways. Molecular docking indicated a strong affinity between TNF and Myr. Myr inhibited the TNF signaling pathway thereby reducing the expression of inflammatory factors in ARPE-19 cells. Additionally, Myr had consistent action with the necroptosis inhibitor Necrostatin-1 (Nec-1), inhibited the RIPK1/RIPK3/MLKL pathway thereby protecting ARPE-19 cells. CONCLUSION: The findings present Myr, as a potent protector against SI-induced AMD, predominantly through modulation of the TNF-RIPK1/RIPK3/MLKL signaling pathway, offering the insights of therapeutic C.cicadae as viable candidates for AMD treatment.

4.
Huan Jing Ke Xue ; 45(7): 4044-4051, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022952

ABSTRACT

The safety and security of stored rainwater quality is the key to improve the efficiency of rainwater resources storage, and roof rainwater is the best scenario for rainwater storage and utilization. Through long-term monitoring of the evolution of water quality during the roof rainwater storage process, different storage materials (PE and glass) and different DO regulation modes (sealing and aeration) were constructed, and 16S rRNA microbial diversity sequencing and environmental factor correlation methods were used to characterize the changes in water quality under microbial metabolism during the rainwater storage process, as well as the potential risks of utilization and health. The results showed that the degradation of COD occurred mainly in the first 10 days of the storage process, and the nutrients were transformed mainly by microbial metabolism. There were differences in the characteristics of water quality changes under different water storage conditions, with traditional PE materials promoting the propagation of some pathogenic Xanthobacter, Alternaria, Stachybotrys, and Cladosporium, which were negatively correlated with DO and pH. Aeration was beneficial in reducing the abundance of bacteria and fungi, whereas the sealed water storage method was beneficial in inhibiting the growth of pathogenic bacteria such as Legionella.


Subject(s)
Rain , Water Microbiology , Water Quality , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/growth & development , RNA, Ribosomal, 16S/genetics
5.
Huan Jing Ke Xue ; 45(7): 4196-4205, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022966

ABSTRACT

Taking the typical yellow soil in Guizhou as the research object, four treatments were set up: no fertilization (CK), single application of chemical fertilizer (NP), 50% organic fertilizer instead of chemical nitrogen fertilizer [1/2(NPM)], and 100% organic fertilizer instead of chemical nitrogen fertilizer (M). The effects of organic fertilizer instead of chemical nitrogen fertilizer on organic carbon and its active components, soil carbon pool management index, soil enzyme activity, and maize and soybean yield in yellow soil were studied in order to provide theoretical basis for scientific fertilization and soil quality improvement in this area. The results showed that the replacement of chemical nitrogen fertilizer by organic fertilizer significantly increased soil pH, organic carbon (SOC), total nitrogen (TN) content, and C/N ratio. Compared with those in the CK and NP treatments, the content and distribution ratio of soil active organic carbon components and soil carbon pool management index (CPMI) were improved by replacing chemical nitrogen fertilizer with organic fertilizer, and the effect of replacing chemical nitrogen fertilizer with 50% organic fertilizer was the best. Compared with those in the NP treatment, the 1/2 (NPM) treatment significantly increased the contents of soil readily oxidizable organic carbon (ROC333, ROC167), dissolved organic carbon (DOC), and microbial biomass carbon (MBC) by 22.90%, 8.10%, 29.32%, and 23.22%, respectively. Compared with those under the CK and NP treatments, organic fertilizer instead of chemical nitrogen fertilizer increased soil enzyme activities. The activities of catalase, urease, sucrase, and phosphatase in the 1/2 (NPM) treatment were significantly increased by 21.89%, 8.24%, 34.91%, and 18.78%, respectively, compared with those in the NP treatment. Compared with that of the NP treatment, the maize yield of the 1/2 (NPM) and M treatments was significantly increased by 44.15% and 17.39%, respectively. There was no significant difference in soybean yield among different fertilization treatments. Correlation analysis showed that soil SOC was significantly positively correlated with ROC333, ROC167, ROC33, DOC, MBC, and soil active organic carbon components, and CPMI was significantly positively correlated with soil organic carbon and its active components (P<0.01). Corn yield was significantly positively correlated with soil enzyme activity, CPMI, total organic carbon, and its active components (P<0.05). Therefore, from the perspective of yield increase and soil fertility, 50% organic fertilizer instead of chemical nitrogen fertilizer was conducive to improving soil quality and soil fertility, which is the key fertilization technology to achieve a high yield of crops in the yellow soil area of Anshun, Guizhou.


Subject(s)
Carbon , Fertilizers , Glycine max , Nitrogen , Organic Chemicals , Soil , Zea mays , Soil/chemistry , Zea mays/growth & development , Glycine max/growth & development , China , Biomass , Crops, Agricultural/growth & development
6.
Huan Jing Ke Xue ; 45(7): 4332-4351, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022978

ABSTRACT

Excess agricultural biomass waste is increasing rapidly, leading to many environmental and governance issues. Therefore, increased attention has been paid to the recycling and value-added application of agricultural biomass waste. In recent years, the research of agricultural biomass waste utilization and derived functional materials has mainly included the following two aspects: ① the extraction of natural polymers and value-added applications and ② the direct preparation of new carbon-based materials, including adsorption, catalysis, energy storage electrode, and composite functional materials. The conversion of agricultural biomass waste into functional materials has been gradually realized and widely used. To enable industrial-scale production and the quality and safety of agricultural biomass waste derivatives and to develop highly feasible and cost-effective biomass waste conversion methods should be the focus of future studies.

7.
J Am Heart Assoc ; : e034707, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023071

ABSTRACT

BACKGROUND: This study investigated the long-term clinical and angiographic outcomes of encephaloduroarteriosynangiosis treatment for symptomatic intracranial atherosclerotic arterial steno-occlusive disease to further evaluate the potential therapeutic role of encephaloduroarteriosynangiosis in this population. METHODS AND RESULTS: A total of 152 adult patients with symptomatic intracranial atherosclerotic arterial steno-occlusive disease who were treated with encephaloduroarteriosynangiosis and intensive medical management across 3 tertiary centers in China between January 2011 and September 2019 were retrospectively included. The primary outcomes were defined as postoperative cerebrovascular events, including ischemic and hemorrhagic stroke. The postoperative neovascularization was analyzed qualitatively and quantitatively by using angiography. Clinical, radiological, and long-term follow-up data were analyzed using Cox regression, logistic regression, and linear regression analyses. Primary outcome rates were 3.2% (5/152) within 30 days, 6.6% (10/152) within 2 years, 9.2% (14/152) within 5 years, and 11.1% (17/152) during a median 9.13 years follow-up. Initial infarction symptoms were positively associated with recurrent ischemic stroke. Additionally, posterior circulation involvement and coexisting cardiac disease indicated poorer neurological status, whereas encephaloduroarteriosynangiosis neovascularization efficacy was negatively associated with older age and vascular risk factors but positively associated with posterior circulation involvement. CONCLUSIONS: Encephaloduroarteriosynangiosis plus intensive medical management appears efficacious and safe for symptomatic intracranial atherosclerotic arterial steno-occlusive disease, with low perioperative risk and favorable long-term results. Further prospective trials are needed to verify its efficacy and determine the optimal patient selection criteria.

8.
J Orthop Surg Res ; 19(1): 405, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010095

ABSTRACT

BACKGROUND: Currently, there is limited understanding regarding the clinical significance of the tumor-stroma ratio (TSR) in giant cell tumor of bone (GCTB). Hence, we aimed to investigate the distribution of TSR in GCTB and explore its correlation with various clinicopathologic factors, immune microenvironment, survival prognosis, and denosumab treatment responsiveness. METHODS: We conducted a multicenter cohort study comprising 426 GCTB patients treated at four centers. TSR was evaluated on hematoxylin and eosin-stained and immunofluorescent sections of tumor specimens. Immunohistochemistry was performed to assess CD3+, CD4+, CD8+, CD20+, PD-1+, PD-L1+, and FoxP3+ TIL subtypes as well as Ki-67 expression levels in 426 tissue specimens. These parameters were then analyzed for their correlations with patient outcomes [local recurrence-free survival (LRFS) and overall survival (OS)], clinicopathological features, and denosumab treatment responsiveness. RESULTS: Low TSR was significantly associated with poor LRFS and OS in both cohorts. Furthermore, TSR was also correlated with multiple clinicopathological features, TIL subtype expression, and denosumab treatment responsiveness. TSR demonstrated similar predictive capabilities as the conventional Campanacci staging system for predicting patients' LRFS and OS. CONCLUSION: The results of this study provide evidence supporting the use of TSR as a reliable prognostic tool in GCTB and as a predictor of denosumab treatment responsiveness. These findings may aid in developing individualized treatment strategies for GCTB patients in the future.


Subject(s)
Bone Neoplasms , Denosumab , Giant Cell Tumor of Bone , Tumor Microenvironment , Humans , Denosumab/therapeutic use , Giant Cell Tumor of Bone/drug therapy , Giant Cell Tumor of Bone/pathology , Tumor Microenvironment/immunology , Female , Male , Adult , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/immunology , Middle Aged , Cohort Studies , Young Adult , Treatment Outcome , Prognosis , Bone Density Conservation Agents/therapeutic use , Adolescent
9.
World J Clin Cases ; 12(20): 4265-4271, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015894

ABSTRACT

BACKGROUND: Uterine fibroids are common benign gynecological conditions. Patients who experience excessive menstruation, anemia, and pressure symptoms should be administered medication, and severe cases require a total hysterectomy. This procedure is invasive and causes severe postoperative pain, which can affect the patient's postoperative sleep quality and, thus, the recovery process. AIM: To evaluate use of dezocine in patient-controlled epidural analgesia (PCEA) for postoperative pain management in patients undergoing total myomectomy. METHODS: We selected 100 patients undergoing total abdominal hysterectomy for uterine fibroids and randomized them into two groups: A control group receiving 0.2% ropivacaine plus 0.06 mg/mL of morphine and an observation group receiving 0.2% ropivacaine plus 0.3 mg/mL of diazoxide in their PCEA. Outcomes assessed included pain levels, sedation, recovery indices, PCEA usage, stress factors, and sleep quality. RESULTS: The observation group showed lower visual analog scale scores, shorter postoperative recovery indices, fewer mean PCEA compressions, lower cortisol and blood glucose levels, and better polysomnographic parameters compared to the control group (P < 0.05). The cumulative incidence of adverse reactions was lower in the observation group than in the control group (P < 0.05). CONCLUSION: Dezocine PCEA can effectively control the pain associated with total myomectomy, reduce the negative impact of stress factors, and have less impact on patients' sleep, consequently resulting in fewer adverse effects.

10.
World J Clin Cases ; 12(20): 4384-4390, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39015899

ABSTRACT

BACKGROUND: Enterocutaneous fistula (ECF) is an abnormal connection between the gastrointestinal tract and the skin. ECF can lead to massive body fluid loss, hypercatabolism, and malnutrition. Therefore, nutritional support plays a crucial role in managing ECFs and promoting the healing of fistulas. For nutritional support, enteral nutrition (EN) is the preferred method when gastrointestinal function is recovering. Currently, various EN approaches have been applied for different anatomical positions of the ECF. However, the effectiveness of administering EN support for treating lower ECFs still needs further exploration and improvement. CASE SUMMARY: We present the case of a 46-year-old male who underwent gastrointestinal stromal tumour resection. Six days after the surgery, the patient presented with fever, fatigue, severe upper abdominal pain, and septic shock. Subsequently, lower ECFs were diagnosed through laboratory and imaging examinations. In addition to symptomatic treatment for homeostasis, total parenteral nutrition support was administered in the first 72 h due to dysfunction of the intestine. After that, we gradually provided EN support through the intestinal obstruction catheter in consideration of the specific anatomic position of the fistula instead of using the nasal jejunal tube. Ultimately, the patient could receive optimal EN support via the catheter, and no complications were found during the treatment. CONCLUSION: Nutritional support is a crucial element in ECF management, and intestinal obstruction catheters could be used for early EN administration.

11.
Front Oncol ; 14: 1415211, 2024.
Article in English | MEDLINE | ID: mdl-39007103

ABSTRACT

Small intestinal lipomatosis is a rare condition that presents a diagnostic challenge due to the absence of identifiable clinical symptoms and limitations of small intestine examination methods. Consequently, preoperative diagnosis is difficult and only a limited number of cases have been documented in the scientific literature. Here, we report a rare case of volvulus caused by small intestinal lipomatosis. A 58-year-old female patient was tentatively diagnosed with acute ileus. The whirl sign was detected using abdominal three-dimensional enhanced computed tomography, along with marked local intestinal dilation and multiple irregular fat-like containing lesions. During surgery, abnormal dilation of the small intestine between 80 and 220 cm from the ileocecal valve was detected and the affected intestine displayed a folded and twisted configuration. Examination of the resected intestine showed that the inner wall of the diseased intestinal lumen was covered with more than 100 lipomas of different sizes, the largest of which measured ~8.0 cm in diameter. Based on clinical symptoms alone, it was difficult to identify the cause of intestinal volvulus before surgery. Complete resection of the affected small intestine and subsequent pathological analysis yielded a definitive diagnosis of small intestinal lipomatosis. While small intestinal lipomatosis is a rare condition, prognosis is favorable if diagnosed early and treated appropriately. The application of three-dimensional enhanced computed tomography imaging can aid in accurate diagnosis, while complete resection of the affected small intestine is crucial to improve patient prognosis.

12.
Zhen Ci Yan Jiu ; 49(7): 736-742, 2024 Jul 25.
Article in English, Chinese | MEDLINE | ID: mdl-39020492

ABSTRACT

OBJECTIVES: To explore the effect of moxibustion on the expression of sorting nexin 5 (SNX5), glutathione peroxidase (GPX4) and ferritin heavy chain (FTH1) in the corpus striatum in mice with Parkinson's disease (PD), so as to explore its mechanisms underlying improvement of PD by ameliorating ferroptosis in the substantia nigra striatum. METHODS: C57BL/6J mice were randomly divided into normal, sham operation, model, and moxibustion groups, with 10 mice in each group. The PD model was established by unilateral injection of 6-hydroxydopamine (3.5 µL) into the right medial forebrain bundle (AP=-1.2 mm, ML=-1.3 mm, DV=-4.75 mm). The mice in the moxibustion group received moxibustion at "Baihui"(GV20) and "Sishencong"(EX-HN1) for 20 min each time, once a day, 6 times a week for 4 weeks. After the intervention, mice received apomorphine rotation behavior detection and pole climbing test. The expression of tyrosine hydroxylase (TH) in the substantia nigra was detected by immunofluorescence, the contents of Fe2+, malondialdehyde (MDA), the ratio of glutathione/oxidized glutathione (GSH/GSSG) in the corpus striatum were detected by using photocolorimetric method, and the expression levels of SNX5 (endocytosomal protein), GPX4 (one of the key targets for inhibiting ferroptosis) and FTH1 proteins and mRNAs in the corpus striatum were detected by Western blot and qPCR, respectively. RESULTS: Behavior tests showed that the pole climbing time and number of body rotation were significantly increased in the model group relevant to the sham operation group (P<0.01), and strikingly decreased in the moxibustion group relevant to the model group (P<0.01). The immunofluorescence intensity of TH in the substantia nigra, the ratio of GSH/GSSG, and the expression levels of GPX4 and FTH1 mRNAs and proteins in the corpus striatum were markedly decreased (P<0.01, P<0.05), while the contents of Fe2+ and MDA and the expression levels of SNX5 mRNA and protein in the corpus striatum significantly increased in the model group relevant to the sham operation group (P<0.01, P<0.05). Compared with the model group, the decreased immunofluorescence intensity of TH, GSH/GSSH, and the expression levels of GPX4 and FTH1 mRNAs and proteins, and the increased contents of Fe2+ and MDA and the expression levels of SNX5 mRNA and protein were reversed in the moxibustion group relevant to the model group (P<0.01, P<0.05). CONCLUSIONS: Moxibustion may improve motor dysfunction in PD mice, which may be related to its effects in down-regulating the expression of SNX5, promoting the synthesis of GSH, decreasing the contents of Fe2+ and MDA, up-regulating the ratio of GSH/GSSG and the expression of GPX4 and FTH1 mRNAs and proteins in the corpus striatum, and inhibiting the occurrence of ferroptosis.


Subject(s)
Corpus Striatum , Ferroptosis , Mice, Inbred C57BL , Moxibustion , Neurons , Parkinson Disease , Animals , Ferroptosis/genetics , Mice , Corpus Striatum/metabolism , Parkinson Disease/metabolism , Parkinson Disease/therapy , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Male , Humans , Neurons/metabolism , Sorting Nexins/metabolism , Sorting Nexins/genetics , Down-Regulation , Motor Activity , Disease Models, Animal
13.
Article in English | MEDLINE | ID: mdl-39021186

ABSTRACT

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

15.
Bioconjug Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954733

ABSTRACT

Fibroblast activation protein (FAP) has recently gained significant attention as a promising tumor biomarker for both diagnosis and therapeutic applications. A series of radiopharmaceuticals based on fibroblast activation protein inhibitors (FAPIs) have been developed and translated into the clinic. Though some of them such as radiolabeled FAPI-04 probes have achieved favorable in vivo imaging performance, further improvement is still highly desired for obtaining radiopharmaceuticals with a high theranostics potential. In this study, we innovatively designed an FAPI ligand SMIC-3002 by changing the core quinoline motif of FAPI-04 to the quinolinium scaffold. The engineered molecule was further radiolabeled with 68Ga to generate a positron emission tomography (PET) probe, [68Ga]Ga-SMIC-3002, which was then evaluated in vitro and in vivo. [68Ga]Ga-SMIC-3002 demonstrated high in vitro stability, nanomolar affinity for FAP (8 nM for protein, 23 nM for U87MG cells), and specific uptake in FAP-expressing tumors, with a tumor/muscle ratio of 19.1 and a tumor uptake of 1.48 ± 0.03 ID/g% at 0.5 h in U87MG tumor-bearing mice. In summary, the quinolinium scaffold can be successfully used for the development of the FAP-targeted tracer. [68Ga]Ga-SMIC-3002 not only shows high potential for clinical translation but also offers insights into designing a new generation of FAPI tracers.

16.
J Med Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962837

ABSTRACT

Targeting c-Met is a clinical trend for the precise treatment of HCC, but the potential issue of acquired drug resistance cannot be ignored. Targeted protein degradation technology has demonstrated promising prospects in disease treatment and overcoming drug resistance due to its special mechanism of action. In this study, we designed and synthesized two series of novel c-Met degraders and conducted a systematic biological evaluation of the optimal compound H11. H11 exhibited good c-Met degradation activity and anti-HCC activity. Importantly, H11 also demonstrated more potent inhibitory activity against Ba/F3-TPR-MET-D1228N and Ba/F3-TPR-MET-Y1230H cell lines than did tepotinib. In summary, H11 displayed potent anti-HCC activity as a degrader and may overcome resistance to type Ib inhibitors, making it a new therapeutic strategy for HCC with MET alterations.

17.
Liver Int ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963299

ABSTRACT

BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.

18.
J Cancer ; 15(13): 4301-4312, 2024.
Article in English | MEDLINE | ID: mdl-38947376

ABSTRACT

Background: SIVA-1 has been reported to play a key role in cell apoptosis and gastric cancer (GC) chemoresistance in vitro. Nevertheless, the clinical significance of SIVA-1 in GC chemotherapy remains unclear. Methods and results: Immunohistochemistry and histoculture drug response assays were used to determine SIVA-1 expression and the inhibition rate (IR) of agents to GC and to further analyze the relationship between these two phenomena. Additionally, cisplatin (DDP)-resistant GC cells were used to elucidate the role and mechanism of SIVA-1 in vivo. The results demonstrated that SIVA-1 expression was positively correlated with the IR of DDP to GC but not with those of 5-fluorouracil (5-FU) or adriamycin (ADM). Furthermore, SIVA-1 overexpression with DDP treatment synergistically inhibited tumor growth in vivo by increasing PCBP1 and decreasing Bcl-2 and Bcl-xL expression. Conclusions: Our study demonstrated that SIVA-1 may serve as an indicator of the GC sensitivity to DDP, and the mechanism of SIVA-1 in GC resistance to DDP was preliminarily revealed.

19.
Neuroimage Clin ; 43: 103636, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38950504

ABSTRACT

The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.

20.
Front Immunol ; 15: 1397722, 2024.
Article in English | MEDLINE | ID: mdl-38957471

ABSTRACT

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Subject(s)
Exosomes , Insulin Receptor Substrate Proteins , Lipopolysaccharides , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sepsis , Signal Transduction , TOR Serine-Threonine Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Sepsis/metabolism , Sepsis/immunology , TOR Serine-Threonine Kinases/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Macrophages/metabolism , Macrophages/immunology , Insulin Receptor Substrate Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Male , Mice, Inbred C57BL , Macrophage Activation/drug effects , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...