Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0281484, 2023.
Article in English | MEDLINE | ID: mdl-36745639

ABSTRACT

Maize lethal necrosis is a destructive virus disease of maize caused by maize chlorotic mottle virus (MCMV) in combination with a virus in the family Potyviridae. Emergence of MLN is typically associated with the introduction of MCMV or its vectors and understanding its spread through seed is critical for disease management. Previous studies suggest that although MCMV is detected on seed, the seed transmission rate of this virus is low. However, mechanisms influencing its transmission are poorly understood. Elucidating these mechanisms is crucial for informing strategies to prevent spread on contaminated seed. In this study, we evaluated the rate of MCMV seed transmission using seed collected from plants that were artificially inoculated with MCMV isolates from Hawaii and Kenya. Grow-out tests indicated that MCMV transmission through seed was rare, with a rate of 0.004% among the more than 85,000 seed evaluated, despite detection of MCMV at high levels in the seed lots. To understand factors that limit transmission from seed, MCMV distribution in seed tissues was examined using serology and immunolocalization. The virus was present at high levels in maternal tissues, the pericarp and pedicel, but absent from filial endosperm and embryo seed tissues. The ability to transmit MCMV from seed to uninfected plants was tested to evaluate virus viability. Transmission was negatively associated with both seed maturity and moisture content. Transmission of MCMV from infested seed dried to less than 15% moisture was not detected, suggesting proper handling could be important for minimizing spread of MCMV through seed.


Subject(s)
Plant Diseases , Potyviridae , Tombusviridae , Zea mays , Kenya , Plant Diseases/virology , Zea mays/virology , Hawaii , Seeds/virology
2.
Plant Dis ; 105(6): 1596-1601, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33320046

ABSTRACT

Maize chlorotic mottle virus (MCMV) has driven the emergence of maize lethal necrosis worldwide, where it threatens maize production in areas of East Africa, South America, and Asia. It is thought that MCMV transmission through seed may be important for introduction of the virus in new regions. Identification of infested seed lots is critical for preventing the spread of MCMV through seed. Although methods for detecting MCMV in leaf tissue are available, diagnostic methods for its detection in seed lots are lacking. In this study, ELISA, RT-PCR, and RT-qPCR were adapted for detection of MCMV in maize seed. Purified virions of MCMV isolates from Kansas, Mexico, and Kenya were then used to determine the virus detection thresholds for each diagnostic assay. No substantial differences in response were detected among the isolates in any of the three assays. The RT-PCR and a SYBR Green-based RT-qPCR assays were >3,000 times more sensitive than commercial ELISA for MCMV detection. For ELISA using seed extracts, selection of positive and negative controls was critical, most likely because of relatively high backgrounds. Use of seed soak solutions in ELISA detected MCMV with similar sensitivity to seed extracts, produced minimal background, and required substantially less labor. ELISA and RT-PCR were both effective for detecting MCMV in seed lots from Hawaii and Kenya, with ELISA providing a reliable and inexpensive diagnostic assay that could be implemented routinely in seed testing facilities.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plant Diseases , Tombusviridae , Kenya , Seeds
3.
Virus Res ; 282: 197943, 2020 06.
Article in English | MEDLINE | ID: mdl-32205142

ABSTRACT

Maize lethal necrosis (MLN), a complex viral disease, emerged as a serious threat to maize production and the livelihoods of smallholders in eastern Africa since 2011, primarily due to the introduction of maize chlorotic mottle virus (MCMV). The International Maize and Wheat Improvement Center (CIMMYT), in close partnership with national and international partners, implemented a multi-disciplinary and multi-institutional strategy to curb the spread of MLN in sub-Saharan Africa, and mitigate the impact of the disease. The strategy revolved around a) intensive germplasm screening and fast-tracked development and deployment of MLN-tolerant/resistant maize hybrids in Africa-adapted genetic backgrounds; b) optimizing the diagnostic protocols for MLN-causing viruses, especially MCMV, and capacity building of relevant public and private sector institutions on MLN diagnostics and management; c) MLN monitoring and surveillance across sub-Saharan Africa in collaboration with national plant protection organizations (NPPOs); d) partnership with the private seed sector for production and exchange of MLN pathogen-free commercial maize seed; and e) awareness creation among relevant stakeholders about MLN management, including engagement with policy makers. The review concludes by highlighting the need to keep continuous vigil against MLN-causing viruses, and preventing any further spread of the disease to the major maize-growing countries that have not yet reported MLN in sub-Saharan Africa.


Subject(s)
Plant Diseases/prevention & control , Plant Diseases/virology , Tombusviridae/pathogenicity , Zea mays/virology , Africa South of the Sahara , Necrosis , Seeds/virology
4.
Virol J ; 15(1): 90, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29792207

ABSTRACT

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Subject(s)
Gammaherpesvirinae/genetics , Genome, Viral , Luteoviridae/genetics , Potyviridae/genetics , Potyvirus/genetics , Zea mays/virology , Amino Acid Sequence , Capsid Proteins/genetics , Chromosome Mapping , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/pathogenicity , High-Throughput Nucleotide Sequencing , Kenya , Luteoviridae/classification , Luteoviridae/isolation & purification , Luteoviridae/pathogenicity , Metagenomics/methods , Phylogeny , Plant Diseases/virology , Plant Leaves/virology , Polymorphism, Genetic , Potyviridae/classification , Potyviridae/isolation & purification , Potyviridae/pathogenicity , Potyvirus/classification , Potyvirus/isolation & purification , Potyvirus/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Sorghum/virology
5.
Sci Rep ; 8(1): 1173, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352173

ABSTRACT

Maize chlorotic mottle virus has been rapidly spreading around the globe over the past decade. The interactions of maize chlorotic mottle virus with Potyviridae viruses causes an aggressive synergistic viral condition - maize lethal necrosis, which can cause total yield loss. Maize production in sub-Saharan Africa, where it is the most important cereal, is threatened by the arrival of maize lethal necrosis. We obtained maize chlorotic mottle virus genome sequences from across East Africa and for the first time from Ecuador and Hawaii, and constructed a phylogeny which highlights the similarity of Chinese to African isolates, and Ecuadorian to Hawaiian isolates. We used a measure of clustering, the adjusted Rand index, to extract region-specific SNPs and coding variation that can be used for diagnostics. The population genetics analysis we performed shows that the majority of sequence diversity is partitioned between populations, with diversity extremely low within China and East Africa.


Subject(s)
Gammaherpesvirinae/physiology , Plant Diseases/virology , Base Sequence , Computational Biology/methods , Gammaherpesvirinae/isolation & purification , Genetic Variation , Genome, Viral , Genotype , Geography, Medical , High-Throughput Nucleotide Sequencing , Phylogeny , Polymorphism, Single Nucleotide
6.
Phytopathology ; 105(7): 956-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25822185

ABSTRACT

In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.


Subject(s)
Potyviridae/physiology , Tombusviridae/physiology , Zea mays/virology , Africa South of the Sahara , Food Supply , Host-Pathogen Interactions , Pest Control , Plant Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...