Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Math Methods Med ; 2022: 8040487, 2022.
Article in English | MEDLINE | ID: mdl-35799648

ABSTRACT

Advancement in technology has led to an increase in data. Consequently, techniques such as deep learning and artificial intelligence which are used in deciphering data are increasingly becoming popular. Further, advancement in technology does increase user expectations on devices, including consumer interfaces such as mobile apps, virtual environments, or popular software systems. As a result, power from the battery is consumed fast as it is used in providing high definition display as well as in charging the sensors of the devices. Low latency requires more power consumption in certain conditions. Cloud computing improves the computational difficulties of smart devices with offloading. By optimizing the device's parameters to make it easier to find optimal decisions for offloading tasks, using a metaheuristic algorithm to transfer the data or offload the task, cloud computing makes it easier. In cloud servers, we offload the tasks and limit their resources by simulating them in a virtual environment. Then we check resource parameters and compare them using metaheuristic algorithms. When comparing the default algorithm FCFS to ACO or PSO, we find that PSO has less battery or makespan time compared to FCFS or ACO. The energy consumption of devices is reduced if their resources are offloaded, so we compare the results of metaheuristic algorithms to find less battery usage or makespan time, resulting in the PSO increasing battery life or making the system more efficient.


Subject(s)
Artificial Intelligence , Mobile Applications , Algorithms , Cloud Computing , Humans , Resource Allocation
2.
Comput Math Methods Med ; 2021: 5384481, 2021.
Article in English | MEDLINE | ID: mdl-34777563

ABSTRACT

In this study we propose a Coronavirus Disease 2019 (COVID-19) mathematical model that stratifies infectious subpopulations into: infectious asymptomatic individuals, symptomatic infectious individuals who manifest mild symptoms and symptomatic individuals with severe symptoms. In light of the recent revelation that reinfection by COVID-19 is possible, the proposed model attempt to investigate how reinfection with COVID-19 will alter the future dynamics of the recent unfolding pandemic. Fitting the mathematical model on the Kenya COVID-19 dataset, model parameter values were obtained and used to conduct numerical simulations. Numerical results suggest that reinfection of recovered individuals who have lost their protective immunity will create a large pool of asymptomatic infectious individuals which will ultimately increase symptomatic individuals with mild symptoms and symptomatic individuals with severe symptoms (critically ill) needing urgent medical attention. The model suggests that reinfection with COVID-19 will lead to an increase in cumulative reported deaths. Comparison of the impact of non pharmaceutical interventions on curbing COVID19 proliferation suggests that wearing face masks profoundly reduce COVID-19 prevalence than maintaining social/physical distance. Further, numerical findings reveal that increasing detection rate of asymptomatic cases via contact tracing, testing and isolating them can drastically reduce COVID-19 surge, in particular individuals who are critically ill and require admission into intensive care.


Subject(s)
COVID-19/transmission , Models, Biological , Pandemics , SARS-CoV-2 , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Computational Biology , Computer Simulation , Contact Tracing , Databases, Factual , Disease Susceptibility , Humans , Kenya/epidemiology , Masks , Pandemics/prevention & control , Pandemics/statistics & numerical data , Physical Distancing , Reinfection/epidemiology , Reinfection/transmission , SARS-CoV-2/immunology
3.
Comput Math Methods Med ; 2020: 9435819, 2020.
Article in English | MEDLINE | ID: mdl-33281923

ABSTRACT

A mathematical model incorporating exogenous reinfection and primary progression infection processes is proposed. Global stability is examined using the geometric approach which involves the generalization of Poincare-Bendixson criterion for systems of n-ordinary differential equations. Analytical results show that for a Susceptible-Exposed-Infective-Recovered (SEIR) model incorporating exogenous reinfection and primary progression infection mechanisms, an additional condition is required to fulfill the Bendixson criterion for global stability. That is, the model is globally asymptotically stable whenever a parameter accounting for exogenous reinfection is less than the ratio of background mortality to effective contact rate. Numerical simulations are also presented to support theoretical findings.


Subject(s)
Infections/etiology , Models, Biological , Reinfection/etiology , Computational Biology , Computer Simulation , Disease Susceptibility , Endemic Diseases , Humans , Infections/epidemiology , Infections/transmission , Mathematical Concepts , Reinfection/epidemiology , Reinfection/transmission
4.
PLoS One ; 13(11): e0206603, 2018.
Article in English | MEDLINE | ID: mdl-30427891

ABSTRACT

A tuberculosis (TB) model that accounts for heterogeneity in host susceptibility to tuberculosis is proposed, with the aim of investigating the implications this may have for the effectiveness of public health interventions. The model examines the possibility that recovered individuals treated from active TB and individuals treated with preventive therapy acquire different levels of immunity. This contrasts with recent studies that assume the two cohorts acquire the same level of immunity, and therefore both groups are reinfected at the same rate. The analysis presented here examines the impact of this assumption when designing intervention strategies. Comparison of reinfection rates between cohorts treated with preventive therapy and recovered individuals who were previously treated for active TB provides important epidemiological insights. It is found that the reinfection rate of the cohort treated with preventive therapy is the one that plays the key role in qualitative changes in TB dynamics. By contrast, the reinfection rate of recovered individuals (previously treated from active TB) plays a minor role. Moreover, the study shows that preventive treatment of individuals during early latency is always beneficial regardless of the level of susceptibility to reinfection. Further, if patients have greater immunity following treatment for late latent infection, then treatment is again beneficial. However, if susceptibility increases following treatment for late latent infection, the effect of treatment depends on the epidemiological setting. That is: (i) in (very) low burden settings, the effect on reactivation predominates and the burden declines with treatment; (ii) in moderate to high burden settings the effect of reinfection predominates and burden increases with treatment. The effect is most dominant between the two reinfection thresholds, RT2 and RT1, respectively associated with individuals being treated with preventive therapy and individuals with untreated late latent TB infection.


Subject(s)
Disease Susceptibility , Models, Biological , Tuberculosis/epidemiology , Tuberculosis/therapy , Disease Susceptibility/epidemiology , Disease Susceptibility/immunology , Humans , Public Health , Tuberculosis/immunology , Tuberculosis/prevention & control
5.
PLoS One ; 13(3): e0194256, 2018.
Article in English | MEDLINE | ID: mdl-29566101

ABSTRACT

An epidemiological model is presented that provides a comprehensive description of the transmission pathways involved for recurrent tuberculosis (TB), whereby cured individuals can become reinfected. Our main goal is to determine conditions that lead to the appearance of a backward bifurcation. This occurs when an asymptotically stable infection free equilibrium concurrently exists with a stable non-trivial equilibria even though the basic reproduction number R0 is less than unity. Although, some 10-30% cases of TB are recurrent, the role of recurrent TB as far as the formation of backward bifurcation is concerned, is rarely if ever studied. The model used here incorporates progressive primary infection, exogenous reinfection, endogenous reactivation and recurrent TB as transmission mechanisms that contribute to TB progression. Unlike other studies of TB dynamics that make use of frequency dependent transmission rates, our analysis provides exact backward bifurcation threshold conditions without resorting to commonly applied approximations and simplifying assumptions. Exploration of the model through analytical and numerical analysis reveal that recurrent TB is sometimes capable of triggering hysteresis effects which allow TB to persist when R0 < 1 even though there is no backward bifurcation. Furthermore, recurrent TB can independently induce backward bifurcation phenomena if it exceeds a certain threshold.


Subject(s)
Models, Biological , Tuberculosis/epidemiology , Tuberculosis/transmission , Basic Reproduction Number , Computational Biology , Disease Progression , Humans , Incidence , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL
...