Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 13(12): 5907-12, 2013.
Article in English | MEDLINE | ID: mdl-24256125

ABSTRACT

We present a quantitative measurement of the number of trapped carriers combined with a measurement of exciton quenching to assess limiting mechanisms for current losses in PbS-quantum-dot-based photovoltaic devices. We use photocurrent intensity dependence and short-wave infrared transient photoluminescence and correlate these with device performance. We find that the effective density of trapped carriers ranges from 1 in 10 to 1 in 10,000 quantum dots, depending on ligand treatment, and that nonradiative exciton quenching, as opposed to recombination with trapped carriers, is likely the limiting mechanism in these devices.


Subject(s)
Lead/chemistry , Nanotechnology , Quantum Dots/chemistry , Sulfides/chemistry , Luminescence , Organic Chemicals/chemistry , Semiconductors , Surface Properties
2.
Nat Chem ; 5(7): 602-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23787751

ABSTRACT

The spectral linewidth of an ensemble of fluorescent emitters is dictated by the combination of single-emitter linewidths and sample inhomogeneity. For semiconductor nanocrystals, efforts to tune ensemble linewidths for optical applications have focused primarily on eliminating sample inhomogeneities, because conventional single-molecule methods cannot reliably build accurate ensemble-level statistics for single-particle linewidths. Photon-correlation Fourier spectroscopy in solution (S-PCFS) offers a unique approach to investigating single-nanocrystal spectra with large sample statistics and high signal-to-noise ratios, without user selection bias and at fast timescales. With S-PCFS, we directly and quantitatively deconstruct the ensemble linewidth into contributions from the average single-particle linewidth and from sample inhomogeneity. We demonstrate that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled. These findings delineate the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core-shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.


Subject(s)
Nanoparticles , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Spectrometry, Fluorescence , Sulfides/chemistry
3.
Nanotechnology ; 24(12): 125302, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23466608

ABSTRACT

We demonstrated a technique to control the placement of 6 nm-diameter CdSe and 5 nm-diameter CdSe/CdZnS colloidal quantum dots (QDs) through electron-beam lithography. This QD-placement technique resulted in an average of three QDs in each cluster, and 87% of the templated sites were occupied by at least one QD. These QD clusters could be in close proximity to one another, with a minimum separation of 12 nm. Photoluminescence measurements of the fabricated QD clusters showed intermittent photoluminescence, which indicates that the QDs were optically active after the fabrication process. This optimized top-down lithographic process is a step towards the integration of individual QDs in optoelectronic and nano-optical systems.

4.
Nano Lett ; 12(8): 4404-8, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22784104

ABSTRACT

We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals unimpeded by defects such as cracking and clustering that typically exist in larger-scale films. We find that the electrical conductivity of the nanoscale films is 180 times higher than that of drop-cast, microscopic films made of the same type of nanocrystal. Our technique for forming the nanoscale films is based on electron-beam lithography and a lift-off process. The patterns have dimensions as small as 30 nm and are positioned on a surface with 30 nm precision. The method is flexible in the choice of nanocrystal core-shell materials and ligands. We demonstrate patterns with PbS, PbSe, and CdSe cores and Zn(0.5)Cd(0.5)Se-Zn(0.5)Cd(0.5)S core-shell nanocrystals with a variety of ligands. We achieve unprecedented versatility in integrating semiconductor nanocrystal films into device structures both for studying the intrinsic electrical properties of the nanocrystals and for nanoscale optoelectronic applications.

5.
ACS Nano ; 6(4): 3121-7, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22480161

ABSTRACT

We investigate the bias-stress effect in field-effect transistors (FETs) consisting of 1,2-ethanedithiol-treated PbS quantum dot (QD) films as charge transport layers in a top-gated configuration. The FETs exhibit ambipolar operation with typical mobilities on the order of µ(e) = 8 × 10(-3) cm(2) V(-1) s(-1) in n-channel operation and µ(h) = 1 × 10(-3) cm(2) V(-1) s(-1) in p-channel operation. When the FET is turned on in n-channel or p-channel mode, the established drain-source current rapidly decreases from its initial magnitude in a stretched exponential decay, manifesting the bias-stress effect. The choice of dielectric is found to have little effect on the characteristics of this bias-stress effect, leading us to conclude that the associated charge-trapping process originates within the QD film itself. Measurements of bias-stress-induced time-dependent decays in the drain-source current (I(DS)) are well fit to stretched exponential functions, and the time constants of these decays in n-channel and p-channel operation are found to follow thermally activated (Arrhenius) behavior. Measurements as a function of QD size reveal that the stressing process in n-channel operation is faster for QDs of a smaller diameter while stress in p-channel operation is found to be relatively invariant to QD size. Our results are consistent with a mechanism in which field-induced nanoscale morphological changes within the QD film result in screening of the applied gate field. This phenomenon is entirely recoverable, which allows us to repeatedly observe bias stress and recovery characteristics on the same device. This work elucidates aspects of charge transport in chemically treated lead chalcogenide QD films and is of relevance to ongoing investigations toward employing these films in optoelectronic devices.

6.
Nano Lett ; 12(2): 569-75, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22250976

ABSTRACT

We fabricated planar PbS quantum dot devices with ohmic and Schottky type electrodes and characterized them using scanning photocurrent and photovoltage microscopies. The microscopy techniques used in this investigation allow for interrogation of the lateral depletion width and related photovoltaic properties in the planar Schottky type contacts. Titanium/QD contacts exhibited depletion widths that varied over a wide range as a function of bias voltage, while the gold/QD contacts showed ohmic behavior over the same voltage range.


Subject(s)
Lead/chemistry , Nanotechnology/instrumentation , Quantum Dots , Sulfides/chemistry , Transistors, Electronic , Electrodes , Gold/chemistry , Particle Size , Photochemistry/instrumentation , Surface Properties , Titanium/chemistry
7.
Nano Lett ; 11(7): 2955-61, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21661734

ABSTRACT

The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.


Subject(s)
Lead/chemistry , Molybdenum/chemistry , Oxides/chemistry , Quantum Dots , Sulfides/chemistry , Zinc Oxide/chemistry , Nanotechnology , Particle Size , Photochemistry , Surface Properties
9.
J Am Chem Soc ; 130(51): 17290-2, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19053441

ABSTRACT

The fullerene adducts 1a and 1b, whose molecular shapes either promote or hinder the formation of 1-D stacks, have been examined for their potential to form 1-D wire-like domains in bulk-heterojunction organic solar cells. The photovoltaic efficiency of solar cells based on blends of the stacking fullerene 1a with regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) is greatly enhanced compared to nonstacking model fullerene 1b.

SELECTION OF CITATIONS
SEARCH DETAIL
...