Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 34(13): 3020-3030.e7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38917797

ABSTRACT

Plants have evolved mechanisms to abscise organs as they develop or when exposed to unfavorable conditions.1 Uncontrolled abscission of petals, fruits, or leaves can impair agricultural productivity.2,3,4,5 Despite its importance for abscission progression, our understanding of the IDA signaling pathway and its regulation remains incomplete. IDA is secreted to the apoplast, where it is perceived by the receptors HAESA (HAE) and HAESA-LIKE2 (HSL2) and somatic embryogenesis receptor kinase (SERK) co-receptors.6,7,8,9 These plasma membrane receptors activate an intracellular cascade of mitogen-activated protein kinases (MAPKs) by an unknown mechanism.10,11,12 Here, we characterize brassinosteroid signaling kinases (BSKs) as regulators of floral organ abscission in Arabidopsis. BSK1 localizes to the plasma membrane of abscission zone cells, where it interacts with HAESA receptors to regulate abscission. Furthermore, we demonstrate that YODA (YDA) has a leading role among other MAPKKKs in controlling abscission downstream of the HAESA/BSK complex. This kinase axis, comprising a leucine-rich repeat receptor kinase, a BSK, and an MAPKKK, is known to regulate stomatal patterning, early embryo development, and immunity.10,13,14,15,16 How specific cellular responses are obtained despite signaling through common effectors is not well understood. We show that the identified abscission-promoting allele of BSK1 also enhances receptor signaling in other BSK-mediated pathways, suggesting conservation of signaling mechanisms. Furthermore, we provide genetic evidence supporting independence of BSK1 function from its kinase activity in several developmental processes. Together, our findings suggest that BSK1 facilitates signaling between plasma membrane receptor kinases and MAPKKKs via conserved mechanisms across multiple facets of plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flowers , Signal Transduction , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/growth & development , Flowers/genetics , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Kinases/metabolism , Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...