Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 65: 64-73, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28400021

ABSTRACT

Staphylococcus aureus frequently isolated from milk products in sub-Saharan Africa (SSA) is a major pathogen responsible for food intoxication, human and animal diseases. SSA hospital-derived strains are well studied but data on the population structure of foodborne S. aureus required to identify possible staphylococcal food poisoning sources is lacking. Therefore, the aim was to assess the population genetic structure, virulence and antibiotic resistance genes associated with milk-derived S. aureus isolates from Côte d'Ivoire, Kenya and Somalia through spa-typing, MLST, and DNA microarray analysis. Seventy milk S. aureus isolates from the three countries were assigned to 27 spa (7 new) and 23 (12 new) MLST sequence types. Milk-associated S. aureus of the three countries is genetically diverse comprising human and livestock-associated clonal complexes (CCs) predominated by the CC5 (n = 10) and CC30 (n = 9) isolates. Panton-Valentine leukocidin, toxic shock syndrome toxin and enterotoxin encoding genes were predominantly observed among human-associated CCs. Penicillin, fosfomycin and tetracycline, but not methicillin resistance genes were frequently detected. Our findings indicate that milk-associated S. aureus in SSA originates from human and animal sources alike highlighting the need for an overarching One Health approach to reduce S. aureus disease burdens through improving production processes, animal care and hygienic measures.


Subject(s)
Camelus/microbiology , Cultured Milk Products/microbiology , Disease Reservoirs/microbiology , Milk/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Africa, Eastern/epidemiology , Africa, Western/epidemiology , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/genetics , Drug Resistance, Multiple, Bacterial , Enterotoxins/genetics , Exotoxins/genetics , Food Safety , Humans , Leukocidins/genetics , Livestock/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Multilocus Sequence Typing , Oligonucleotide Array Sequence Analysis , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission , Staphylococcal Infections/veterinary , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Superantigens/genetics , Virulence Factors/genetics , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/prevention & control
2.
Food Sci Nutr ; 2(6): 692-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25493187

ABSTRACT

Indigenous fermented milk products contain microbiota composed of technologically important species and strains which are gradually getting lost with new technologies. We investigated the microbial diversity inamabere amaruranu, a traditionally fermented milk product from Kenya. Sixteen samples of the product from different containers were obtained. One hundred and twenty isolates of lactic acid bacteria (LAB) and 67 strains of yeasts were identified using API 50 CH and API 20 C AUX identification kits, respectively. The average pH of all the traditional fermented samples was 4.00 ± 0.93. Lactobacilli, yeasts, and molds as well asEnterobacteriaceae counts from the plastic containers were significantly higher (P < 0.05) than those from gourd.Enterobacteriaceae were below 1.00 ± 1.11 log10 cfu/mL in products from the gourds and 2.17 ± 1.92 log10 cfu/mL from the plastic containers. The LAB species were identified asStreptococcus thermophilus (25%),Lactobacillus plantarum (20%), andLeuconostoc mesenteroides (20%). The predominant yeasts wereSaccharomyces cerevisiae (25%),Trichosporum mucoides (15%),Candida famata (10%), andCandida albicans (10%). The type of vessel used for fermentation had no significant influence on the type of isolated and identified species. The diverse mixture of LAB and yeasts microflora forms a potential consortium for further product innovation inamabere amaruranu and other fermented milk products.

3.
J Food Sci ; 79(10): M2031-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25220792

ABSTRACT

UNLABELLED: Fish-processing plants still face food safety (FS) challenges worldwide despite the existence of several quality assurance standards and food safety management systems/s (FSMSs). This study assessed performance of FSMS in fish exporting sector considering pressure from the context in which they operate. A FSMS diagnostic tool with checklist was used to assess the context, FSMS, and FS output in 9 Kenyan fish exporting companies. Majority (67%) companies operated at moderate- to high-risk context but with an average performance in control and assurance activities. This situation could be insufficient to deal with ambiguity, uncertainty, and vulnerability issues in the context characteristics. Contextual risk posed by product characteristics (nature of raw materials) and chain environment characteristics was high. Risk posed by the chain environment characteristics, low power in supplier relationships, and low degree of authority in customer relationships was high. Lack of authority in relationship with suppliers would lead to high raw material risk situation. Even though cooling facilities, a key control activity, was at an advanced level, there was inadequate packaging intervention equipment which coupled with inadequate physical intervention equipment could lead to further weakened FSMS performance. For the fish companies to improve their FSMS to higher level and enhance predictability, they should base their FSMS on scientific information sources, historical results, and own experimental trials in their preventive, intervention, and monitoring systems. Specific suggestions are derived for improvements toward higher FSMS activity levels or lower risk levels in context characteristics. PRACTICAL APPLICATION: Weak areas in performance of control and assurance activities in export fish-processing sector already implementing current quality assurance guidelines and standards were studied taking into consideration contextual pressure wherein the companies operate. Important mitigation measures toward improved contextual risk, core assurance, and control activities irrespective of applied food safety management systems in fish industries were suggested.


Subject(s)
Fishes/microbiology , Food Handling/standards , Food Safety , Food-Processing Industry/standards , Hazard Analysis and Critical Control Points/methods , Animals
4.
J Food Prot ; 77(8): 1380-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25198601

ABSTRACT

Fish processing plants still face microbial food safety-related product rejections and the associated economic losses, although they implement legislation, with well-established quality assurance guidelines and standards. We assessed the microbial performance of core control and assurance activities of fish exporting processors to offer suggestions for improvement using a case study. A microbiological assessment scheme was used to systematically analyze microbial counts in six selected critical sampling locations (CSLs). Nine small-, medium- and large-sized companies implementing current food safety management systems (FSMS) were studied. Samples were collected three times on each occasion (n = 324). Microbial indicators representing food safety, plant and personnel hygiene, and overall microbiological performance were analyzed. Microbiological distribution and safety profile levels for the CSLs were calculated. Performance of core control and assurance activities of the FSMS was also diagnosed using an FSMS diagnostic instrument. Final fish products from 67% of the companies were within the legally accepted microbiological limits. Salmonella was absent in all CSLs. Hands or gloves of workers from the majority of companies were highly contaminated with Staphylococcus aureus at levels above the recommended limits. Large-sized companies performed better in Enterobacteriaceae, Escherichia coli, and S. aureus than medium- and small-sized ones in a majority of the CSLs, including receipt of raw fish material, heading and gutting, and the condition of the fish processing tables and facilities before cleaning and sanitation. Fish products of 33% (3 of 9) of the companies and handling surfaces of 22% (2 of 9) of the companies showed high variability in Enterobacteriaceae counts. High variability in total viable counts and Enterobacteriaceae was noted on fish products and handling surfaces. Specific recommendations were made in core control and assurance activities associated with sampling locations showing poor performance.


Subject(s)
Bacteria/isolation & purification , Fishes/microbiology , Food Contamination/analysis , Food Handling/standards , Food Safety , Animals , Bacteria/classification , Bacteria/genetics , Colony Count, Microbial , Food Handling/instrumentation , Humans , Hygiene , Workforce
5.
J Food Prot ; 76(6): 975-83, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23726192

ABSTRACT

The effects of existing food safety management systems and size of the production facility on microbiological quality in the dairy industry in Kenya were studied. A microbial assessment scheme was used to evaluate 14 dairies in Nairobi and its environs, and their performance was compared based on their size and on whether they were implementing hazard analysis critical control point (HACCP) systems and International Organization for Standardization (ISO) 22000 recommendations. Environmental samples from critical sampling locations, i.e., workers' hands and food contact surfaces, and from end products were analyzed for microbial quality, including hygiene indicators and pathogens. Microbial safety level profiles (MSLPs) were constructed from the microbiological data to obtain an overview of contamination. The maximum MSLP score for environmental samples was 18 (six microbiological parameters, each with a maximum MSLP score of 3) and that for end products was 15 (five microbiological parameters). Three dairies (two large scale and one medium scale; 21% of total) achieved the maximum MSLP scores of 18 for environmental samples and 15 for the end product. Escherichia coli was detected on food contact surfaces in three dairies, all of which were small scale dairies, and the microorganism was also present in end product samples from two of these dairies, an indication of cross-contamination. Microbial quality was poorest in small scale dairies. Most operations in these dairies were manual, with minimal system documentation. Noncompliance with hygienic practices such as hand washing and cleaning and disinfection procedures, which is common in small dairies, directly affects the microbial quality of the end products. Dairies implementing HACCP systems or ISO 22000 recommendations achieved maximum MSLP scores and hence produced safer products.


Subject(s)
Dairy Products/microbiology , Equipment Contamination , Food Contamination/analysis , Food-Processing Industry/standards , Hazard Analysis and Critical Control Points , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Humans , Hygiene , Kenya , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...