Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nano Lett ; 21(19): 8324-8331, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34546060

ABSTRACT

Rare earth nickelates including LaNiO3 are promising catalysts for water electrolysis to produce oxygen gas. Recent studies report that Fe substitution for Ni can significantly enhance the oxygen evolution reaction (OER) activity of LaNiO3. However, the role of Fe in increasing the activity remains ambiguous, with potential origins that are both structural and electronic in nature. On the basis of a series of epitaxial LaNi1-xFexO3 thin films synthesized by molecular beam epitaxy, we report that Fe substitution tunes the Ni oxidation state in LaNi1-xFexO3 and a volcano-like OER trend is observed, with x = 0.375 being the most active. Spectroscopy and ab initio modeling reveal that high-valent Fe3+δ cationic species strongly increase the transition-metal (TM) 3d bandwidth via Ni-O-Fe bridges and enhance TM 3d-O 2p hybridization, boosting the OER activity. These studies deepen our understanding of structural and electronic contributions that give rise to enhanced OER activity in perovskite oxides.

2.
Sci Adv ; 7(10)2021 Mar.
Article in English | MEDLINE | ID: mdl-33674310

ABSTRACT

Recent discovery of superconductivity in Nd0.8Sr0.2NiO2 motivates the synthesis of other nickelates for providing insights into the origin of high-temperature superconductivity. However, the synthesis of stoichiometric R 1-x Sr x NiO3 thin films over a range of x has proven challenging. Moreover, little is known about the structures and properties of the end member SrNiO3 Here, we show that spontaneous phase segregation occurs while depositing SrNiO3 thin films on perovskite oxide substrates by molecular beam epitaxy. Two coexisting oxygen-deficient Ruddlesden-Popper phases, Sr2NiO3 and SrNi2O3, are formed to balance the stoichiometry and stabilize the energetically preferred Ni2+ cation. Our study sheds light on an unusual oxide thin-film nucleation process driven by the instability in perovskite structured SrNiO3 and the tendency of transition metal cations to form their most stable valence (i.e., Ni2+ in this case). The resulting metastable reduced Ruddlesden-Popper structures offer a testbed for further studying emerging phenomena in nickel-based oxides.

3.
ACS Nano ; 14(11): 14887-14894, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33074667

ABSTRACT

Epitaxial Fe3O4 thin films grown on single crystal MgO(001) present well-defined model systems to study fundamental multivalent ion diffusion and associated phase transition processes in transition-metal-oxide-based cathodes. In this work, we show at an atomic scale the Mg2+ diffusion pathways, kinetics, and reaction products at the Fe3O4/MgO heterostructures under different oxygen partial pressures but with the same thermal annealing conditions. Combining microscopic, optical, and spectroscopic techniques, we demonstrate that an oxygen-rich environment promotes facile Mg2+ incorporation into the Fe2+ sites, leading to the formation of Mg1-xFe2+xO4 spinel structures, where the corresponding portion of the Fe2+ ions are oxidized to Fe3+. Conversely, annealing in vacuum results in the formation of a thin interfacial rocksalt layer (Mg1-yFeyO), which serves as a blocking layer leading to significantly reduced Mg2+ diffusion to the bulk Fe3O4. The observed changes in transport and optical properties as a result of Mg diffusion are interpreted in light of the electronic structures determined by X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. Our results reveal the critical role of available anions in governing cation diffusion in the spinel structures and the need to prevent formation of unwanted reaction intermediates for the promotion of facile cation diffusion.

4.
Acc Chem Res ; 52(3): 645-655, 2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30543407

ABSTRACT

The development of efficient solar energy conversion to augment other renewable energy approaches is one of the grand challenges of our time. Water splitting, or the disproportionation of H2O into energy-dense fuels, H2 and O2, is undoubtedly a promising strategy. Solar water splitting involves the concerted transfer of four electrons and four protons, which requires the synergistic operation of solar light harvesting, charge separation, mass and charge transport, and redox catalysis processes. It is unlikely that individual materials can mediate the entire sequence of charge and mass transport as well as energy conversion processes necessary for photocatalytic water splitting. An alternative approach, emulating the functioning of photosynthetic systems, involves the utilization of hybrid systems wherein different components perform the various functions required for solar water splitting. The design of such hybrid systems requires the multiple components to operate in lockstep with optimal thermodynamic driving forces and interfacial charge transfer kinetics. This Account describes a new class of nanoscale heterostructures comprising M xV2O5 nanowires, where M is a p-block cation with a ( n - 1) d10 ns2 np0 electronic configuration characterized by a stereoactive lone pair of electrons and x is its stoichiometry, interfaced with II-VI semiconductor quantum dots (QDs). Photocatalytic water splitting involves the transfer of excited-state holes from QDs to mid-gap states (derived from the stereoactive lone pairs of p-block cations) of nanowires, hole transport through nanowires, the reduction of protons at a QD-immobilized catalyst, and water oxidation at an anode. The M xV2O5/QD architectures provide a vast design space for evolutionary optimization of function with considerable tunability of composition and structure of the individual components as well as of the interfacial structure, thereby facilitating programmability of absorption spectra, energetic offsets, and charge-transfer reactivity. The available design space spans choice of the p-block cation M, its stoichiometry x, the composition and size of various QDs, and the nature of the nanowire/QD interface. This multivariate parameter space has been navigated by integrating first-principles modeling, diversified synthesis, spectroscopic measurements, and catalytic evaluation to facilitate the rational design of several generations of heterostructures and the systematic improvement of their photocatalytic performance. The electronic structures of the target heterostructures are predicted by DFT calculations in light of the revised lone pair model of stereoactive structural distortions and evaluated by hard X-ray photoelectron spectroscopy such as to systematically tune the interfacial band offsets. Central to this approach is the development of a topochemical "etch-a-sketch" intercalation approach that allows for facile installation of p-block cations in metastable polymorphs of V2O5. The interfacial charge transfer kinetics of M xV2O5/QD heterostructures is further evaluated by transient absorption spectroscopy to measure excited-state charge-transfer dynamics and is found to depend sensitively on interfacial structure and the thermodynamic driving forces in accordance with Marcus theory. The integration of theory and experiment has allowed for the design of viable photocatalytic architectures exemplified by the exceptional catalytic performance of ß-Pb xV2O5/CdX (X= S, Se) architectures, which has subsequently been elaborated to other lone-pair M xV2O5 compounds, demonstrating the effective exploitation of the opportunities for programmability available in the design space.

5.
J Am Chem Soc ; 140(49): 17163-17174, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30380858

ABSTRACT

Tackling the complex challenge of harvesting solar energy to generate energy-dense fuels such as hydrogen requires the design of photocatalytic nanoarchitectures interfacing components that synergistically mediate a closely interlinked sequence of light-harvesting, charge separation, charge/mass transport, and catalytic processes. The design of such architectures requires careful consideration of both thermodynamic offsets and interfacial charge-transfer kinetics to ensure long-lived charge carriers that can be delivered at low overpotentials to the appropriate catalytic sites while mitigating parasitic reactions such as photocorrosion. Here we detail the theory-guided design and synthesis of nanowire/quantum dot heterostructures with interfacial electronic structure specifically tailored to promote light-induced charge separation and photocatalytic proton reduction. Topochemical synthesis yields a metastable ß-Sn0.23V2O5 compound exhibiting Sn 5s-derived midgap states ideally positioned to extract photogenerated holes from interfaced CdSe quantum dots. The existence of these midgap states near the upper edge of the valence band (VB) has been confirmed, and ß-Sn0.23V2O5/CdSe heterostructures have been shown to exhibit a 0 eV midgap state-VB offset, which underpins ultrafast subpicosecond hole transfer. The ß-Sn0.23V2O5/CdSe heterostructures are further shown to be viable photocatalytic architectures capable of efficacious hydrogen evolution. The results of this study underscore the criticality of precisely tailoring the electronic structure of semiconductor components to effect rapid charge separation necessary for photocatalysis.

6.
ACS Omega ; 3(7): 7310-7323, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458891

ABSTRACT

ε-LiVOPO4 is a promising multielectron cathode material for Li-ion batteries that can accommodate two electrons per vanadium, leading to higher energy densities. However, poor electronic conductivity and low lithium ion diffusivity currently result in low rate capability and poor cycle life. To enhance the electrochemical performance of ε-LiVOPO4, in this work, we optimized its solid-state synthesis route using in situ synchrotron X-ray diffraction and applied a combination of high-energy ball-milling with electronically and ionically conductive coatings aiming to improve bulk and surface Li diffusion. We show that high-energy ball-milling, while reducing the particle size also introduces structural disorder, as evidenced by 7Li and 31P NMR and X-ray absorption spectroscopy. We also show that a combination of electronically and ionically conductive coatings helps to utilize close to theoretical capacity for ε-LiVOPO4 at C/50 (1 C = 153 mA h g-1) and to enhance rate performance and capacity retention. The optimized ε-LiVOPO4/Li3VO4/acetylene black composite yields the high cycling capacity of 250 mA h g-1 at C/5 for over 70 cycles.

7.
Nat Commun ; 7: 12022, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27349567

ABSTRACT

The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.

8.
ACS Appl Mater Interfaces ; 8(18): 11532-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27104947

ABSTRACT

V2O5 aerogels are capable of reversibly intercalating more than 5 Li(+)/V2O5 but suffer from lifetime issues due to their poor capacity retention upon cycling. We employed a range of material characterization and electrochemical techniques along with atomic pair distribution function, X-ray photoelectron spectroscopy, and density functional theory to determine the origin of the capacity fading in V2O5 aerogel cathodes. In addition to the expected vanadium redox due to intercalation, we observed LiOH species that formed upon discharge and were only partially removed after charging, resulting in an accumulation of electrochemically inactive LiOH over each cycle. Our results indicate that the tightly bound water that is necessary for maintaining the aerogel structure is also inherently responsible for the capacity fade.

SELECTION OF CITATIONS
SEARCH DETAIL