Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genome Ed ; 6: 1399051, 2024.
Article in English | MEDLINE | ID: mdl-38988891

ABSTRACT

Modern agriculture has encountered several challenges in achieving constant yield stability especially due to disease outbreaks and lack of long-term disease-resistant crop cultivars. In the past, disease outbreaks in economically important crops had a major impact on food security and the economy. On the other hand climate-driven emergence of new pathovars or changes in their host specificity further poses a serious threat to sustainable agriculture. At present, chemical-based control strategies are frequently used to control microbial pathogens and pests, but they have detrimental impact on the environment and also resulted in the development of resistant phyto-pathogens. As a replacement, cultivating engineered disease-resistant crops can help to minimize the negative impact of regular pesticides on agriculture and the environment. Although traditional breeding and genetic engineering have been instrumental in crop disease improvement but they have certain limitations such as labour intensity, time consumption, and low efficiency. In this regard, genome editing has emerged as one of the potential tools for improving disease resistance in crops by targeting multiple traits with more accuracy and efficiency. For instance, genome editing techniques, such as CRISPR/Cas9, CRISPR/Cas13, base editing, TALENs, ZFNs, and meganucleases, have proved successful in improving disease resistance in crops through targeted mutagenesis, gene knockouts, knockdowns, modifications, and activation of target genes. CRISPR/Cas9 is unique among these techniques because of its remarkable efficacy, low risk of off-target repercussions, and ease of use. Some primary targets for developing CRISPR-mediated disease-resistant crops are host-susceptibility genes (the S gene method), resistance genes (R genes) and pathogen genetic material that prevents their development, broad-spectrum disease resistance. The use of genome editing methods has the potential to notably ameliorate crop disease resistance and transform agricultural practices in the future. This review highlights the impact of phyto-pathogens on agricultural productivity. Next, we discussed the tools for improving disease resistance while focusing on genome editing. We provided an update on the accomplishments of genome editing, and its potential to improve crop disease resistance against bacterial, fungal and viral pathogens in different crop systems. Finally, we highlighted the future challenges of genome editing in different crop systems for enhancing disease resistance.

2.
Food Sci Nutr ; 12(7): 4546-4568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055230

ABSTRACT

The tropical and subtropical regions of the world support the growth of the Indian plant Moringa oleifera. It usually goes by the name drumstick tree or horseradish tree and thrives in warm climates. The leaves of the M. oleifera tree are now frequently used as nutrients and nutraceuticals due to their availability of various minerals. While having only very minor antinutritional effects, the leaves are abundant in many beneficial compounds. A recent review of the bioactive components and activity of moringa leaves has focused on both in vivo and in vitro studies. Drumstick leaves have antidiabetic qualities, anti-inflammatory, anticancer, and antibacterial qualities among other health benefits. Phytochemicals, in addition to minerals and vitamins, are abundant in this vegetable. The majority of these effects, according to a review in the literature, are mostly brought on by the presence of carotenoids, glucosinolates, and phytochemicals. As a value-added component in the production of wholesome meals, moringa is becoming more popular. Despite extensive research into locating and quantifying these advantageous elements in drumstick leaves, bioavailability and bioaccessibility studies were carried out. Beneficial photochemicals are absorbed and digested through incredibly intricate processes that involve several physicochemical and physiological interactions. Therefore, the biological impact of food may be attributed to its various metabolites that can access particular areas of action rather than its original substances. This body of literature offers the most recent findings in scientific research on the bioavailability, health advantages, nutritional profiles, and bioactive activities of moringa leaves as they relate to their use in a range of food products. Drumsticks are frequently used as a food element that promotes health because of their potent protection against a variety of ailments and the presence of environmental pollutants.

3.
Article in English | MEDLINE | ID: mdl-38710849

ABSTRACT

Microalgae (MA) are the most abundant seaweeds with high nutritional properties. They are accepted as potential biocatalysts for the bioremediation of wastewater. They are widely used in food, feed, and biofuel industries and can potentially be food for future generations. MA-based purification of wastewater technology could be a universal alternative solution for the recovery of resources from wastewater for low-cost biomass feedstock for industry. They provide a wide range of functional components, viz. omega-3 fatty acids, along with a plenteous number of pigments such as ß-carotene, astaxanthin, lutein, phycocyanin, and chlorophyll, which are used extensively as food additives and nutraceuticals. Further, proteins, lipids, vitamins, and carbohydrates are described as nutritional characteristics in MA. They are investigated as single-cell protein, thickening/stabilizing agents, and pigment sources in the food industry. The review emphasizes the production and extraction of nutritional and functional components of algal biomass and the role of microalgal polysaccharides in digestion and nutritional absorption in the gastrointestinal tract. Further, the use of MA in the food industry was also investigated along with their potential therapeutic applications.

4.
Plant Physiol Biochem ; 210: 108628, 2024 May.
Article in English | MEDLINE | ID: mdl-38636256

ABSTRACT

Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/toxicity , Plants/metabolism , Plant Physiological Phenomena , Photosynthesis , Stress, Physiological , Plant Roots/metabolism , Plant Roots/microbiology , Oxidative Stress
5.
Heliyon ; 9(6): e16804, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332944

ABSTRACT

Due to growing consumer interest in fitness and wellbeing, foods and beverages with therapeutic and functional qualities are in higher demand. In addition to being significant staple crops and major providers of nutrition and energy, cereals are rich in bioactive phytochemicals with health benefits. Cereal grains offer a lot of promise for processing into functional beverages since these include a wide variety of bioactive phytochemicals such as phenolic compounds, carotenoids, dietary fibres, phytosterols, tocols, gamma-oryzanol, and phytic acid. Despite the fact that a wide variety of beverages made from cereal grains are produced globally, they have received very little technological and scientific attention. The beverages confer replacements for milk made from cereal grains, roasted cereal grain teas and fermented non-alcoholic cereal grain drinks. This review emphasizes on the three primary kinds of functional beverages made from cereal grains. Further, the potential applications and directions for the future related to these beverages are discussed with elaborated processing methods, health benefits and product attributes. Cereal grain-based beverages may represent a promising new class of healthy functional beverages in our daily lives as the food industry gets more diverse.

6.
Chemosphere ; 321: 137999, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36724850

ABSTRACT

Green and efficient removal of polluted materials are essential for the sustainability of a clean and green environment. Nanomaterials, particularly cellulose nanocrystals (CNCs), are abundant in nature and can be extracted from various sources, including cotton, rice, wheat, and plants. CNCs are renewable biomass materials with a high concentration of polar functional groups. This study used succinic anhydride to modify the surface of native cellulose nanocrystals (NCNCs). Succinic anhydride has been frequently used in adhesives and sealant chemicals for a long time, and here, it is evaluated for dye removal performance. The morphology and modification of CNCs studied using FTIR, TGA & DTG, XRD, SEM, AFM, and TEM. The ability of modified cellulose nanocrystals (MCNCs) to adsorb cationic golden yellow dye and methylene blue dye was investigated. The MCNCs exhibited high adsorption affinity for the two different cationic dyes. The maximum adsorption efficiency of NCNCs and MCNCs towards the cationic dye was 0.009 and 0.156 wt%. The investigation for adhesive properties is based on the strength and toughness of MCNCs. MCNCs demonstrated improved tensile strength (2350 MPa) and modulus (13.9 MPa) using E-51 epoxy system and a curing agent compared to 3 wt% composites. This research lays the groundwork for environmentally friendly fabrication and consumption in the industrial sector.


Subject(s)
Coloring Agents , Nanoparticles , Coloring Agents/chemistry , Succinic Anhydrides , Adsorption , Cellulose/chemistry , Nanoparticles/chemistry , Cations
7.
Phytother Res ; 37(3): 1136-1152, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36592613

ABSTRACT

In Asia, mulberry has long been used to treat various infectious and internal ailments as a traditional medication. The compounds found in it have the potential to improve human health. Because there is no approved and defined evaluation procedure, it has not been formally or scientifically recognized. As a result of these investigations, a new frontier in traditional Chinese medicine has opened up, with the possibility of modernization, for the interaction between active components of mulberry and their biological activities. These studies have used current biotechnological technologies. For ages, mulberry has been used as an herbal remedy in Asia to cure various diseases and internal disorders. It has a high concentration of bioactive chemicals that benefit human health. The most abundant phenolic components extracted from white mulberry leaves are flavonoids (Kuwanons, Moracinflavans, Moragrols, and Morkotins), phenolic acids, alkaloids, and so forth. Flavonoids, benzofurans, chalcones, and alkaloids have been discovered to have cytotoxic effects on human cancer cell lines. There is growing evidence that mulberry fruits can potentially prevent cancer and other aging-related disorders due to their high concentration of bioactive polyphenolic-rich compounds and macro and micronutrients. Anthocyanins are rapidly absorbed after eating, arriving in the plasmalemma within 15-50 min and entirely removed after 6-8 hr. Due to a lack of an approved and consistent technique for its examination, it has yet to be formally or scientifically recognized. The mulberry plant is commercially grown for silkworm rearing, and less attention is paid to its bioactive molecules, which have a lot of applications in human health. This review paper discusses the phenolic compounds of white mulberry and black mulberry in detail concerning their role in cancer prevention.


Subject(s)
Morus , Neoplasms , Humans , Anthocyanins/chemistry , Fruit/chemistry , Morus/chemistry , Phenols/chemistry , Flavonoids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...